A Semigroup With Unsolvable Word Problem

Stephen G. Simpson

Original Draft: February 10, 2000 Current Draft: September 4, 2009

We construct a finitely presented semigroup with unsolvable word problem. We follow the exposition of the first few sections of Chapter 12 of Joseph J. Rotman, *The Theory of Groups*, 2nd edition, Allyn-Bacon, 1973, with the difference that Rotman uses Turing machines while we use register machines.

Our construction is based on the following fact. There is a register machine program \mathcal{P} which computes the partial recursive function $2^x \mapsto 0 \cdot \varphi_x^{(1)}(x)$, and such that \mathcal{P} uses only two registers, R_1 and R_2 . This follows easily from Exercise 1.5.10 in my Math 558 lecture notes, Foundations of Mathematics.

Note that $\{x : \mathcal{P}(x) \text{ halts}\}\$ is nonrecursive. In other words, given x, the problem of deciding whether \mathcal{P} halts if started with x in R_1 and with R_2 empty, is unsolvable. Furthermore, we may safely assume that if $\mathcal{P}(x)$ halts then it halts with both registers empty.

The idea of our construction is to encode the action of \mathcal{P} into the word problem of a semigroup S.

Let I_1, \ldots, I_l be the instructions of \mathcal{P} . As usual, I_1 is the first instruction executed, and I_0 is the halt instruction. Our semigroup S will have l+3generators $a, b, q_0, q_1, \ldots, q_l$. If R_1 and R_2 contain x and y respectively, and if I_m is about to be executed, then we represent this state as a word $ba^xq_ma^yb$. Thus a serves as a counting token, and b serves as an end-of-count marker. For each m = 1, ..., l, if I_m says "increment R_1 and go to I_{n_0} ", we represent this as a production $q_m \to aq_{n_0}$ or as a relation $q_m = aq_{n_0}$. If I_m says "increment R_2 and go to I_{n_0} ", we represent this as a production $q_m \to q_{n_0} a$ or as a relation $q_m=q_{n_0}a$. If I_m says "if R_1 is empty go to I_{n_0} otherwise decrement R_1 and go to I_{n_1} ", we represent this as a pair of productions $bq_m \to bq_{n_0}$, $aq_m \to q_{n_1}$, or as a pair of relations $bq_m = bq_{n_0}$, $aq_m = q_{n_1}$. If I_m says "if R_2 is empty go to I_{n_0} otherwise decrement R_2 and go to I_{n_1} ", we represent this as a pair of productions $q_m b \to q_{n_0} b$, $q_m a \to q_{n_1}$, or as a pair of relations $q_m b = q_{n_0} b$, $q_m a = q_{n_1}$. Thus the total number of productions or relations is $l^+ + 2l^-$, where $l = l^+ + l^-$ and l^+ is the number of increment instructions and l^- is the number of decrement instructions. Let S be the semigroup described by these generators and relations.

We claim that for all x, $ba^xq_1b = bq_0b$ in S if and only if $\mathcal{P}(x)$ halts. The "if" part is clear. For the "only if" part, assume that $ba^xq_1b = bq_0b$ in S. This implies that there is a sequence of words $ba^xq_1b = w_0 = \cdots = w_n = bq_0b$ where

each w_{i+1} is obtained from w_i by a forward or backward production. We claim that the backward productions can be eliminated. In other words, if there are any backward productions, we can replace the sequence w_0, \dots, w_n by a shorter sequence. This is actually obvious, because if there is a backward production then there must be one which is immediately followed by a forward production, and these two must be inverses of each other, because \mathcal{P} is deterministic. Thus we see that $ba^xq_1b=bq_0b$ via a sequence of forward productions. This implies that $\mathcal{P}(x)$ halts. Our claim is proved.