
Math 558 – Homework #2

Due October 5, 2009

Solutions

1. Prove that the following sets are not recursive.

(a) T = {e | ϕ
(1)
e is total}.

(b) E = {e | ϕ
(1)
e is empty}.

(c) F = {e | dom(ϕ
(1)
e ) is finite}.

(d) O = {e | 1 ∈ rng(ϕ
(1)
e )}.

(e) I = {3i5j | ϕ
(1)
i = ϕ

(1)
j }.

Solution. By the Parametrization Theorem, let f(m) be a primitive

recursive function such that ϕ
(1)
f(m)(n) ≃ 1 + 0 · ϕ

(1)
m (0) for all m,n.

Recall that H is the Halting Problem, H = {m | ϕ
(1)
m (0) ↓}. For all

m ∈ H we have f(m) ∈ T , f(m) /∈ E, f(m) /∈ F , and f(m) ∈ O. Also,
for all m /∈ H we have f(m) /∈ T , f(m) ∈ E, f(m) ∈ F , and f(m) /∈ O.
Thus f reduces H to T , Ec, F c, and O. Since H is nonrecursive, it
follows that T,E, F,O are nonrecursive.

Fix i such that i ∈ E, i.e., ϕ
(1)
i (n) ↑ for all n. Then E is reducible to I

via the primitive recursive function j 7→ 3i5j. Since E is nonrecursive,
it follows that I is nonrecursive.

2. Prove the following theorem, which generalizes both the Parametriza-
tion Theorem and the Recursion Theorem.

Theorem. Let θ(e,m1, . . . , mk, n1, . . . , nl) be a k + l + 1-place partial
recursive function. Then, we can find a k-place primitive recursive
function f(m1, . . . , mk) such that

ϕ
(l)
f(m1,...,mk)(n1, . . . , nl) ≃ θ(f(m1, . . . , mk), m1, . . . , mk, n1, . . . , nl)

for all m1, . . . , mk, n1, . . . , nl.

1



Solution. First we generalize the Parametrization Theorem, as follows.

Lemma. Given a k + l-place partial recursive function ψ, we can find
a k-place primitive recursive function f such that

ϕ
(l)
f(m1,...,mk)(n1, . . . , nl) ≃ ψ(m1, . . . , mk, n1, . . . , nl)

for all m1, . . . , mk, n1, . . . , nl.

Proof. Let ψ be a k + l-place partial recursive function. By the
Parametrization Theorem, let f ∗ be a 1-place primitive recursive func-
tion such that

ϕ
(l)
f∗(m)(n1, . . . , nl) ≃ ψ((m)1, . . . , (m)k, n1, . . . , nl)

for all m,n1, . . . , nl. The idea here is that m encodes the finite sequence
(m)1, . . . , (m)k via prime power coding. Letting

f(m1, . . . , mk) = f ∗(pm1
1 · · · · · pmk

k )

we see that f is a k-place primitive recursive function and

ϕ
(l)
f(m1,...,mk)(n1, . . . , nl) ≃ ϕ

(l)

f∗(p
m1
1 ·····p

mk
k

)
(n1, . . . , nl)

≃ ψ∗(pm1
1 · · · · · pmk

k , n1, . . . , nl)

≃ ψ(m1, . . . , mk, n1, . . . , nl)

for all m1, . . . , mk, n1, . . . , nl. This proves the lemma.

Now, to prove our theorem, we imitate the proof of the Recursion
Theorem. Let θ be a k + l+ 1-place partial recursive function. By our
lemma, let g be a k + 1-place primitive recursive function such that

ϕ
(l)
g(e,m1,...,mk)(n1, . . . , nl) ≃ θ(e,m1, . . . , mk, n1, . . . , nl)

for all e,m1, . . . , mk, n1, . . . , nl. By the Parametrization Theorem, let
d be a 1-place primitive recursive function such that

ϕ
(l)
d(u)(n1, . . . , nl) ≃ ϕ

(l)

ϕ
(1)
u (u)

(n1, . . . , nl)

for all u, n1, . . . , nl. By our lemma, let h be a k-place primitive recursive
function such that

ϕ
(1)
h(m1,...,mk)(u) ≃ g(d(u), m1, . . . , mk)
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for all m1, . . . , mk, u. Finally, letting

f(m1, . . . , mk) = d(h(m1, . . . , mk))

we see that f is a k-place primitive recursive function and

ϕ
(l)
f(m1,...,mk)(n1, . . . , nl) ≃ ϕ

(l)
d(h(m1,...,mk))(n1, . . . , nl)

≃ ϕ
(l)

ϕ
(1)
h(m1,...,mk)

(h(m1,...,mk))
(n1, . . . , nl)

≃ ϕ
(l)
g(d(h(m1,...,mk)),m1,...,mk)(n1, . . . , nk)

≃ ϕ
(l)
g(f(m1,...,mk),m1,...,mk)(n1, . . . , nk)

≃ θ(f(m1, . . . , mk), m1, . . . , mk, n1, . . . , nk)

for all m1, . . . , mk, n1, . . . , nl. This proves the theorem.

3. We know that the Halting Problem is unsolvable. In other words, the
set of Gödel numbers of register machine programs which eventually
halt is nonrecursive. Prove the same result for register machine pro-
grams using only two registers, R1 and R2.

Solution. Let H2 be the Halting Problem for register machine programs
which use only R1 and R2. In other words, H2 = {#(P) | P uses only
R1 and R2 and P(0) eventually halts}. We shall show that H , the
Halting Problem for arbitrary register machine programs, is reducible
to H2. Since H is nonrecursive, it will follow that H2 is nonrecursive.

As a special case of Exercise 1.5.10 in the lecture notes, let R be a
register machine program using only R1 and R2 which computes the

1-place partial recursive function 3n 7→ 5ϕ
(1)
n (0). In particular R(3n)

eventually halts if and only if ϕ
(1)
n (0) ↓, i.e., n ∈ H . If I1, . . . , Il are

the instructions of R, let R∗ be R with the instructions renumbered
as I2, . . . , Il+1. For each n let R∗

n be the program

I1 Il+2 . . . Il+3n I2 · · · Il+1

startWVUTPQRS // R+
1

WVUTPQRS // R+
1

WVUTPQRS // . . . // R+
1

WVUTPQRS // R∗ // stopWVUTPQRS
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which is like R but with 3n hard-coded as the input. Thus R∗

n(0)
eventually halts if and only if R(3n) eventually halts, i.e., n ∈ H .
As in the proof of the Parametrization Theorem (see the lecture notes,
Theorem 1.7.10), we can show that f(n) = #(R∗

n) is primitive recursive
as a function of n. Thus f reduces H to H2, Q.E.D.
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