
Math 558 – Homework #1

Due September 15, 2009

Solutions

1. A real number α is said to be primitive recursive if the function f(n) =
the nth digit of α is primitive recursive. A real number α is said to be
algebraic if it is a root of a nonzero polynomial with integer coefficients.
For example,

√
2 is a real algebraic number, because it is a root of the

polynomial x2 − 2.

Prove that all real algebraic numbers are primitive recursive.

Solution. Let p(x) be a nonzero polynomial of minimal degree with
integer coefficients such that p(α) = 0. Then α is a simple root of p(x),
i.e., p′(α) 6= 0 where p′(x) is the derivative of p(x). Without loss of
generality, assume that α > 0 and p′(α) > 0 and α is irrational. Let a
and b be rational numbers such that 0 < a < α < b and p(x) is negative
for a < x < α and positive for α < x < b. Let m be such that, for
all sufficiently large n, the (m+ n)th digit of α is Remainder(g(n), 10)
where g(n) is the least k such that

a <
k

10n
< b and p

(

k + 1

10n

)

> 0.

Here we are applying the bounded least number operator, so g is prim-
itive recursive. From this it follows easily that f is primitive recursive,
where f(n) = the nth digit of α.

2. We know that the Ackermann function is an example of a 1-place func-
tion which is recursive but not primitive recursive. Find an example of
a 1-place predicate which is recursive but not primitive recursive.

Solution. Our example will be obtained by diagonalizing over all 1-
place primitive recursive functions. We first prove the following lemma
and theorem.



Lemma. We can find a 2-place total recursive function r(e, n) with
the following property. For all k ≥ 1 and all k-place primitive recursive
functions f , there exists e such that r(e,

∏k

i=1 p
ni

i ) = f(n1, . . . , nk) for
all n1, . . . , nk.

Proof. Consider a system of indices for the primitive recursive func-
tions, defined inductively as follows.

(a) Let 2 be an index for the constant zero function, Z(m) = 0.

(b) Let 22 be an index for the successor function, S(m) = m+ 1.

(c) For 1 ≤ i ≤ k let 23 · 3k · 5i be an index of the k-place projection
function Pki(n1, . . . , nk) = ni.

(d) If u1, . . . , ul, v are indices of g1(n1, . . . , nk), . . . , gl(n1, . . . , nk),
h(t1, . . . , tl) respectively, let 24 · 3k · 5v ·

∏l

j=1 p
uj

j+2 be an index
of f(n1, . . . , nk) given by generalized composition as

f(n1, . . . , nk) = h(g1(n1, . . . , nk), . . . , gl(n1, . . . , nk)).

(e) If u and v are indices of g(n1, . . . , nk) and h(m, t, n1, . . . , nk) re-
spectively, let 25 ·3k+1 ·5v ·7u be an index of f(m,n1, . . . , nk) given
by primitive recursion as

f(0, n1, . . . , nk) = g(n1, . . . , nk),

f(m+ 1, n1, . . . , nk) = h(m, f(m,n1, . . . , nk), n1, . . . , nk).

It is routine to show that the set of indices is primitive recursive. More-
over, if e is an index of a k-place primitive recursive function, then
(e)1 = k. By the Recursion Theorem, let ψ(e,m) be a 2-place partial
recursive function with the following properties. Writing n =

∏k

i=1 p
ni

i

and n′ =
∏k

i=1 p
ni

i+1 and n′′ =
∏k

i=1 p
ni

i+2 we have:

(a) ψ(2, pm1 ) ≃ 0.

(b) ψ(22, pm1 ) ≃ m+ 1.

(c) ψ(e, n) ≃ ni whenever e is an index of the form 23 · 3k · 5i.
(d) ψ(e, n) ≃ ψ(v,

∏l

j=1 p
ψ(uj ,n)
j ) whenever e is an index of the form

24 · 3k · 5v ·
∏l

j=1 p
uj

j+2.



(e) ψ(e, p0
1 ·n′) ≃ ψ(u, n) and ψ(e, pm+1

1 ·n′) ≃ ψ(v, pm1 · pψ(e,pm
1
·n′)

2 ·n′′)
whenever e is an index of the form 25 · 3k+1 · 5v · 7u.

(f) ψ(e,m) ≃ 0 otherwise.

By induction on e with a subsidiary induction on m, it is straightfor-
ward to prove that ψ(e,m) ↓ for all e and m, and that ψ(e,

∏k

i=1 p
ni

i ) =
f(n1, . . . , nk) whenever e is an index of a k-ary primitive recursive func-
tion f . Letting r(e,m) = ψ(e,m) we have our lemma.

Theorem. For each k ≥ 1 we can find a k+1-place total recursive func-
tion rk with the following property. For any k-place primitive recursive
function f there exists e such that rk(e, n1, . . . , nk) = f(n1, . . . , nk) for
all n1, . . . , nk.

Proof. Let rk(e, n1, . . . , nk) = r(e,
∏k

i=1 p
ni

i ) where r is as in the lemma.
Clearly rk has the desired property.

Now, define d : N → {0, 1} by d(n) = 1 ·− r1(n, n). Clearly d is the
characteristic function of a 1-place predicate which is recursive but not
primitive recursive.

3. Exhibit a register machine program showing that the function f(m,n) =
mn is computable. (Note that m0 = 1 for all m ∈ N including m = 0.
This convention makes the recursion easier.)

Solution.
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