Math 558 – Homework #1

Due September 15, 2009

Solutions

1. A real number α is said to be *primitive recursive* if the function f(n) = the *n*th digit of α is primitive recursive. A real number α is said to be *algebraic* if it is a root of a nonzero polynomial with integer coefficients. For example, $\sqrt{2}$ is a real algebraic number, because it is a root of the polynomial $x^2 - 2$.

Prove that all real algebraic numbers are primitive recursive.

Solution. Let p(x) be a nonzero polynomial of minimal degree with integer coefficients such that $p(\alpha) = 0$. Then α is a simple root of p(x), i.e., $p'(\alpha) \neq 0$ where p'(x) is the derivative of p(x). Without loss of generality, assume that $\alpha > 0$ and $p'(\alpha) > 0$ and α is irrational. Let aand b be rational numbers such that $0 < a < \alpha < b$ and p(x) is negative for $a < x < \alpha$ and positive for $\alpha < x < b$. Let m be such that, for all sufficiently large n, the (m+n)th digit of α is Remainder(g(n), 10)where q(n) is the least k such that

$$a < \frac{k}{10^n} < b$$
 and $p\left(\frac{k+1}{10^n}\right) > 0.$

Here we are applying the bounded least number operator, so g is primitive recursive. From this it follows easily that f is primitive recursive, where $f(n) = \text{the } n\text{th digit of } \alpha$.

2. We know that the Ackermann function is an example of a 1-place function which is recursive but not primitive recursive. Find an example of a 1-place predicate which is recursive but not primitive recursive.

Solution. Our example will be obtained by diagonalizing over all 1place primitive recursive functions. We first prove the following lemma and theorem. **Lemma.** We can find a 2-place total recursive function r(e, n) with the following property. For all $k \ge 1$ and all k-place primitive recursive functions f, there exists e such that $r(e, \prod_{i=1}^{k} p_i^{n_i}) = f(n_1, \ldots, n_k)$ for all n_1, \ldots, n_k .

Proof. Consider a system of *indices* for the primitive recursive functions, defined inductively as follows.

- (a) Let 2 be an index for the constant zero function, Z(m) = 0.
- (b) Let 2^2 be an index for the successor function, S(m) = m + 1.
- (c) For $1 \le i \le k$ let $2^3 \cdot 3^k \cdot 5^i$ be an index of the k-place projection function $P_{ki}(n_1, \ldots, n_k) = n_i$.
- (d) If u_1, \ldots, u_l, v are indices of $g_1(n_1, \ldots, n_k), \ldots, g_l(n_1, \ldots, n_k),$ $h(t_1, \ldots, t_l)$ respectively, let $2^4 \cdot 3^k \cdot 5^v \cdot \prod_{j=1}^l p_{j+2}^{u_j}$ be an index of $f(n_1, \ldots, n_k)$ given by generalized composition as

$$f(n_1, \ldots, n_k) = h(g_1(n_1, \ldots, n_k), \ldots, g_l(n_1, \ldots, n_k)).$$

(e) If u and v are indices of $g(n_1, \ldots, n_k)$ and $h(m, t, n_1, \ldots, n_k)$ respectively, let $2^5 \cdot 3^{k+1} \cdot 5^v \cdot 7^u$ be an index of $f(m, n_1, \ldots, n_k)$ given by primitive recursion as

$$f(0, n_1, \dots, n_k) = g(n_1, \dots, n_k),$$

$$f(m+1, n_1, \dots, n_k) = h(m, f(m, n_1, \dots, n_k), n_1, \dots, n_k).$$

It is routine to show that the set of indices is primitive recursive. Moreover, if e is an index of a k-place primitive recursive function, then $(e)_1 = k$. By the Recursion Theorem, let $\psi(e, m)$ be a 2-place partial recursive function with the following properties. Writing $n = \prod_{i=1}^{k} p_i^{n_i}$ and $n' = \prod_{i=1}^{k} p_{i+1}^{n_i}$ and $n'' = \prod_{i=1}^{k} p_{i+2}^{n_i}$ we have:

- (a) $\psi(2, p_1^m) \simeq 0.$
- (b) $\psi(2^2, p_1^m) \simeq m + 1.$
- (c) $\psi(e,n) \simeq n_i$ whenever e is an index of the form $2^3 \cdot 3^k \cdot 5^i$.
- (d) $\psi(e,n) \simeq \psi(v, \prod_{j=1}^{l} p_j^{\psi(u_j,n)})$ whenever e is an index of the form $2^4 \cdot 3^k \cdot 5^v \cdot \prod_{j=1}^{l} p_{j+2}^{u_j}$.

- (e) $\psi(e, p_1^0 \cdot n') \simeq \psi(u, n)$ and $\psi(e, p_1^{m+1} \cdot n') \simeq \psi(v, p_1^m \cdot p_2^{\psi(e, p_1^m \cdot n')} \cdot n'')$ whenever e is an index of the form $2^5 \cdot 3^{k+1} \cdot 5^v \cdot 7^u$.
- (f) $\psi(e,m) \simeq 0$ otherwise.

By induction on e with a subsidiary induction on m, it is straightforward to prove that $\psi(e, m) \downarrow$ for all e and m, and that $\psi(e, \prod_{i=1}^{k} p_i^{n_i}) = f(n_1, \ldots, n_k)$ whenever e is an index of a k-ary primitive recursive function f. Letting $r(e, m) = \psi(e, m)$ we have our lemma.

Theorem. For each $k \ge 1$ we can find a k+1-place total recursive function r_k with the following property. For any k-place primitive recursive function f there exists e such that $r_k(e, n_1, \ldots, n_k) = f(n_1, \ldots, n_k)$ for all n_1, \ldots, n_k .

Proof. Let $r_k(e, n_1, \ldots, n_k) = r(e, \prod_{i=1}^k p_i^{n_i})$ where r is as in the lemma. Clearly r_k has the desired property.

Now, define $d : \mathbb{N} \to \{0, 1\}$ by $d(n) = 1 - r_1(n, n)$. Clearly d is the characteristic function of a 1-place predicate which is recursive but not primitive recursive.

3. Exhibit a register machine program showing that the function $f(m, n) = m^n$ is computable. (Note that $m^0 = 1$ for all $m \in \mathbb{N}$ including m = 0. This convention makes the recursion easier.)

Solution.

