Math 558 - Homework #4

Due December 10, 2009

1. Define ordinal exponentiation by transfinite recursion as follows.

$$\begin{array}{rcl} \alpha^0 & = & 1, \\ \alpha^{\beta+1} & = & \alpha^{\beta} \cdot \alpha, \\ \alpha^{\delta} & = & \sup_{\beta < \delta} \alpha^{\beta} \end{array}$$

for all limit ordinals δ . In this exercise we shall obtain a more explicit representation of α^{β} .

Let $\alpha = \operatorname{type}((A, R))$ and $\beta = \operatorname{type}((B, S))$. Let a_0 be the *R*-least element of *A*. Let *C* be the set of functions $f : B \to A$ such that $f(b) = a_0$ for all but finitely many $b \in B$. Let *T* be the ordering of *C* by last difference (see Exercise 4.4.4 in the lecture notes). Show that $\alpha^{\beta} = \operatorname{type}((C, T))$.

2. Let X be a set of sets. By a chain within X we mean a set $C \subseteq X$ such that for all $U, V \in C$ either $U \subseteq V$ or $V \subseteq U$. A chain within X is said to be maximal if it is not properly included in any other chain within X.

Use the Axiom of Choice plus transfinite recursion to prove that there exists a maximal chain within X.

Note: This is a version of Zorn's Lemma.

- 3. Let λ be an infinite cardinal. The *cofinality of* λ , abbreviated $cf(\lambda)$, is defined to be the least κ such that λ can be written as the sum of κ -many cardinals each less than λ . Note that $cf(\lambda) \leq \lambda$.
 - (a) Show that $cf(\lambda)$ is an infinite regular cardinal.
 - (b) Show that for any infinite regular cardinal κ there exist arbitrarily large strong limit cardinals λ such that $cf(\lambda) = \kappa$.
 - (c) Show that λ is regular if and only if $cf(\lambda) = \lambda$.
 - (d) For any infinite cardinal κ , show that $cf(\mu^{\kappa}) > \kappa$ for all $\mu \ge 2$. Two special cases of this are $cf(2^{\kappa}) > \kappa$ and $\lambda^{cf(\lambda)} > \lambda$.
 - (e) Assuming the GCH, prove that for all infinite cardinals κ and λ we have

$$\lambda^{\kappa} = \begin{cases} \lambda & \text{if } \kappa < \operatorname{cf}(\lambda), \\ \lambda^{+} & \text{if } \operatorname{cf}(\lambda) \le \kappa \le \lambda, \\ \kappa^{+} & \text{if } \kappa \ge \lambda. \end{cases}$$