Math 558 – Homework #3

Due October 29, 2009

1. Find a pair of numbers r, a such that $\beta(r, a, 0) = 11$, $\beta(r, a, 1) = 19$, $\beta(r, a, 2) = 30$, $\beta(r, a, 3) = 37$, $\beta(r, a, 4) = 51$.

Hint: First find an appropriate a by hand. Then write a small computer program to find r by brute force.

2. Recall that N = {0, 1, 2, ...} = the natural numbers,
Z = {..., -2, -1, 0, 1, 2, ...} = the integers, and
ℝ = (-∞, ∞) = the real numbers.
According to Matiyasevich's Theorem, we can find a polynomial

$$f(w, x_1, \ldots, x_k)$$

with integer coefficients, such that the set of $a \in \mathbb{N}$ for which the equation $f(a, x_1, \ldots, x_k) = 0$ has a solution in \mathbb{N} is noncomputable.

- (a) Discuss the analogous question in which "solution in N" is replaced by "solution in Z".
- (b) Discuss analogous questions in which "solution in N" is replaced by "solution in ℝ".
- 3. Prove König's Theorem:

Let $\langle \kappa_i \rangle_{i \in I}$ and $\langle \lambda_i \rangle_{i \in I}$ be indexed sets of cardinal numbers with the same index set I. If $\kappa_i < \lambda_i$ for all $i \in I$, then $\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$.