Math 558 - Homework \#3

Due October 29, 2009

1. Find a pair of numbers r, a such that $\beta(r, a, 0)=11, \beta(r, a, 1)=19$, $\beta(r, a, 2)=30, \beta(r, a, 3)=37, \beta(r, a, 4)=51$.

Hint: First find an appropriate a by hand. Then write a small computer program to find r by brute force.
2. Recall that $\mathbb{N}=\{0,1,2, \ldots\}=$ the natural numbers, $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=$ the integers, and $\mathbb{R}=(-\infty, \infty)=$ the real numbers.
According to Matiyasevich's Theorem, we can find a polynomial

$$
f\left(w, x_{1}, \ldots, x_{k}\right)
$$

with integer coefficients, such that the set of $a \in \mathbb{N}$ for which the equation $f\left(a, x_{1}, \ldots, x_{k}\right)=0$ has a solution in \mathbb{N} is noncomputable.
(a) Discuss the analogous question in which "solution in \mathbb{N} " is replaced by "solution in \mathbb{Z} ".
(b) Discuss analogous questions in which "solution in \mathbb{N} " is replaced by "solution in \mathbb{R} ".
3. Prove König's Theorem:

Let $\left\langle\kappa_{i}\right\rangle_{i \in I}$ and $\left\langle\lambda_{i}\right\rangle_{i \in I}$ be indexed sets of cardinal numbers with the same index set I. If $\kappa_{i}<\lambda_{i}$ for all $i \in I$, then $\sum_{i \in I} \kappa_{i}<\prod_{i \in I} \lambda_{i}$.

