Math 558 - Homework \#1

Due September 15, 2009

1. A real number α is said to be primitive recursive if the function $f(n)=$ the nth digit of α is primitive recursive. A real number α is said to be algebraic if it is a root of a nonzero polynomial with integer coefficients. For example, $\sqrt{2}$ is a real algebraic number, because it is a root of the polynomial $x^{2}-2$.
Prove that all real algebraic numbers are primitive recursive.
2. We know that the Ackermann function is an example of a 1-place function which is recursive but not primitive recursive. Find an example of a 1-place predicate which is recursive but not primitive recursive.
3. Exhibit a register machine program showing that the function $f(m, n)=$ m^{n} is computable. (Note that $m^{0}=1$ for all $m \in \mathbb{N}$ including $m=0$. This convention makes the recursion easier.)
