Computability, Unsolvability, Randomness Math 497A: Homework \#12

Stephen G. Simpson

Due Monday, November 26, 2007

1. (a) Let P be a Π_{1}^{0} subset of $2^{\mathbb{N}}$. If P has only finitely many elements, prove that all of the elements of P are recursive.
Hint: Use Lemma 48.3, a.k.a., the Magic Lemma.
(b) Does this hold with $\mathbb{N}^{\mathbb{N}}$ instead of $2^{\mathbb{N}}$?
2. (a) Let $P \subseteq 2^{\mathbb{N}}$ be nonempty Π_{1}^{0} with no recursive elements. Prove that for all Y we can find $X \in P$ such that $X^{\prime} \equiv_{T} X \oplus 0^{\prime} \equiv_{T} Y \oplus 0^{\prime}$. Note: This result is a combination of the Low Basis Theorem and the Friedberg Jump Inversion Theorem. The proof is basically a combination of the two proofs.
(b) Deduce that for all Y we can find a random X such that $X^{\prime} \equiv_{T}$ $X \oplus 0^{\prime} \equiv_{T} Y \oplus 0^{\prime}$.
3. Recall that we have defined

$$
K(n)=K(\underbrace{1, \ldots, 1}_{n}\rangle)
$$

for all $n \in \mathbb{N}$.
Prove that

$$
K(\tau) \leq C(\tau)+K(C(\tau))+O(1)
$$

for all bitstrings τ.
4. Assume that $f(n)$ is a recursive function such that

$$
\sum_{n=0}^{\infty} \frac{1}{2^{f(n)}}<\infty
$$

Prove that $K(n) \leq f(n)+O(1)$ for all n.

