Computability, Unsolvability, Randomness Math 497A: Homework #12

Stephen G. Simpson

Due Monday, November 26, 2007

- (a) Let P be a Π⁰₁ subset of 2^N. If P has only finitely many elements, prove that all of the elements of P are recursive. Hint: Use Lemma 48.3, a.k.a., the Magic Lemma.
 - (b) Does this hold with $\mathbb{N}^{\mathbb{N}}$ instead of $2^{\mathbb{N}}$?
- 2. (a) Let $P \subseteq 2^{\mathbb{N}}$ be nonempty Π_1^0 with no recursive elements. Prove that for all Y we can find $X \in P$ such that $X' \equiv_T X \oplus 0' \equiv_T Y \oplus 0'$. Note: This result is a combination of the Low Basis Theorem and the Friedberg Jump Inversion Theorem. The proof is basically a combination of the two proofs.
 - (b) Deduce that for all Y we can find a random X such that $X' \equiv_T X \oplus 0' \equiv_T Y \oplus 0'$.
- 3. Recall that we have defined

$$K(n) = K(\langle \underbrace{1, \dots, 1}_{n} \rangle)$$

for all $n \in \mathbb{N}$.

Prove that

$$K(\tau) \le C(\tau) + K(C(\tau)) + O(1)$$

for all bitstrings τ .

4. Assume that f(n) is a recursive function such that

$$\sum_{n=0}^{\infty} \frac{1}{2^{f(n)}} < \infty .$$

Prove that $K(n) \leq f(n) + O(1)$ for all n.