Computability, Unsolvability, Randomness Math 497A: Homework #11

Stephen G. Simpson

Due Monday, November 12, 2007

For $f, g \in \mathbb{N}^{\mathbb{N}}$ say that f is majorized by g if f(n) < g(n) for all n.

1. If P(f,g,-) is a Π_1^0 predicate, prove that the predicate

$$Q(g, -) \equiv \exists f (P(f, g, -) \land f \text{ is majorized by } g)$$

is again Π_1^0 .

Note: This is a generalization of the Magic Lemma, Lemma 48.3 in the Lecture Notes. You can prove it by imitating the the proof of the Magic Lemma.

- 2. (a) Show that the result of Problem 1 holds if we replace Π_1^0 by Σ_2^0 .
 - (b) Show that the result does not hold if we replace Π^0_1 by Π^0_2 . In fact, we can find a Π^0_2 predicate P(X,-) with X ranging over $2^{\mathbb{N}}$ such that the predicate $\exists X \ P(X,-)$ is not arithmetical, i.e., it is not Π^0_n or Σ^0_n for any n.
- 3. Let $P \subseteq 2^{\mathbb{N}}$ be Π_1^0 . Let $\Phi(X, n)$ be a partial recursive functional such that $\Phi(X, n) \downarrow$ for all $X \in P$ and all n. Find a total recursive function g(n) which majorizes $\Phi(X, n)$ for all $X \in P$ and all n.
- 4. An oracle X is said to be hyperimmune-free (sorry for the awkward terminology) if each $f \leq_T X$ is majorized by some recursive function.

Note: This is another example of a "lowness property" of X.

(a) Let $P \subseteq 2^{\mathbb{N}}$ be nonempty and Π_1^0 . Prove that there exists $X \in P$ such that X is hyperimmune-free. This result is known as the Hyperimmune-Free Basis Theorem.

Hint: Use Π^0_1 approximation as in the Low Basis Theorem.

(b) Deduce that we can find a random X which is hyperimmune-free.

5. Prove that if $0 <_T X \leq_T 0'$ then X is not hyperimmune-free.

Note: This prevents us from combining the Low Basis Theorem and the Hyperimmune-Free Basis Theorem into one theorem.

Hint for the proof: By Post's Theorem X is Δ_2^0 . Deduce that the singleton set $\{X\}$ is Π_2^0 . Use this to find $f \equiv_T X$ such that the singleton set $\{f\}$ is Π_1^0 . If such an f is majorized by a recursive function, use the result of Problem 1 to show that f is recursive.

- 6. (Extra Credit)
 - (a) Prove that if X is 2-random then X is not hyperimmune-free.
 - (b) What if we assume only that X is weakly 2-random?
- 7. (a) Prove that if Y is nonrecursive then $\mu(\{X \in 2^{\mathbb{N}} \mid Y \nleq_T X\}) = 1$.
 - (b) Deduce that for each nonrecursive Y we can find a random X such that $Y \nleq_T X$.
 - (c) More generally, prove the following. Given a sequence of nonrecursive oracles Y_i , $i=0,1,2,\ldots$, we can find an X which is n-random for all n and such that $Y_i \nleq_T X$ for all i.

Note: It can be shown that for all Y we can find a random X such that $Y \leq_T X$. In fact, each Turing degree $\geq \mathbf{0}'$ contains a random X. However, this does not hold for weakly 2-random X's, because all such X's are Turing incomparable with 0'.

8. (a) Assume that $P \subseteq 2^{\mathbb{N}}$ is Π_1^0 and

$$\neg \exists X (X \in P \land X \text{ is recursive}).$$

Find a nonrecursive Y such that

$$\neg \exists X (X \in P \land X \leq_T Y).$$

Hint: Use finite approximation.

(b) Find a nonrecursive Y such that

$$\neg \exists X (X \text{ is random } \land X \leq_T Y).$$

Hint: Use the fact that $\{X \mid X \text{ is random}\}\$ is the union of a sequence of Π_1^0 sets.