Computability, Unsolvability, Randomness Math 497A: Homework #10

Stephen G. Simpson

Due Monday, November 5, 2007

1. Let f and g be Turing oracles. Define $f \leq_{LK} g$ to mean that

$$K^g(\tau) \leq K^f(\tau) + O(1)$$

for all bitstrings τ . Define $f \leq_{LR} g$ to mean that

 $(\forall X \in 2^{\mathbb{N}})$ (if X is g-random then X is f-random).

- (a) Show that $f \leq_T g$ implies both $f \leq_{LK} g$ and $f \leq_{LR} g$.
- (b) Let $X \in 2^{\mathbb{N}}$ be such that $X \leq_{LK} 0$. Show that X is K-trivial, i.e., $K(X \upharpoonright n) \leq K(n) + O(1)$ for all n.

Note: It can be shown that the properties $f \leq_{LK} g$ and $f \leq_{LR} g$ are equivalent to each other. However, they are not equivalent to $f \leq_{T} g$. In fact, we can find a nonrecursive $X \in 2^{\mathbb{N}}$ such that $X \leq_{LK} 0$. It can be shown that $X \leq_{LK} 0$ if and only if X is K-trivial.

2. For convenience in stating this problem, let us identify subsets of \mathbb{N} with their characteristic functions. In other words, we identify $A \subseteq \mathbb{N}$ with $\chi_A \in 2^{\mathbb{N}}$. Thus $2^{\mathbb{N}}$ is the set of all subsets of \mathbb{N} .

Let $J: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the Turing jump operator:

$$J(X) = X' = H^X =$$
 the Halting Problem relative to X .

Recall that $0^{(1)} = 0' = J(0)$ and in general $0^{(n+1)} = (0^{(n)})' = J(0^{(n)})$ for all n. By Post's Theorem we know that for each $n \ge 1$ the set $0^{(n)}$ is Σ_n^0 and not Δ_n^0 . Define

$$0^{(\omega)} = \bigoplus_{n=1}^{\infty} 0^{(n)} = \{3^m 5^n \mid m \in 0^{(n)}\} .$$

Note that the set $0^{(\omega)}$ is not arithmetical, i.e., it is not Δ_n^0 for any n.

(a) Show that the 2-place predicate $P \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ given by

$$P(X,Y) \equiv J(X) = Y$$

is Π_2^0 .

- (b) Show that for each $n \ge 1$ the singleton set $\{0^{(n)}\}$ is Π_2^0 .
- (c) Show that the singleton set $\{0^{(\omega)}\}$ is Π_2^0 .

Note: These singleton sets are subsets of $2^{\mathbb{N}}$.

- 3. (a) Show that every nonempty Π^0_1 subset of $2^{\mathbb{N}}$ contains a member which is Δ^0_n for some n.
 - (b) In part (a), what is the optimal value of n?
 - (c) In parts (a) and (b), what if we replace Π_1^0 sets by Π_2^0 sets?
 - (d) Is every Π_2^0 subset of $2^{\mathbb{N}}$ Turing isomorphic to a Π_1^0 subset of $2^{\mathbb{N}}$?
- 4. Let $X \in 2^{\mathbb{N}}$. We say that X is 2-random if X is random relative to 0'. Recall also that X is weakly 2-random if $X \notin \text{any } \Pi_2^0$ set of measure 0. Let $\mathbf{a} = \deg_T(X) = \text{the Turing degree of } X$.
 - (a) Show that if X is 2-random then X is weakly 2-random.
 - (b) Show that if X is weakly 2-random then $\inf(\mathbf{a}, \mathbf{0}') = \mathbf{0}$.
 - (c) In part (b) what if we assume only that X is random?
 - (d) Show that if X is 2-random then $\sup(\mathbf{a}, \mathbf{0}') = \mathbf{a}'$.
 - (e) In part (d) what if we assume only that X is weakly 2-random?
- 5. Show that every Π_2^0 subset of $2^{\mathbb{N}}$ includes a $\Sigma_2^{0,0'}$ set of the same measure.