# Computability, Unsolvability, Randomness Math 497A: Homework \#9 

Stephen G. Simpson

## Due Monday, October 29, 2007

1. Hoeffding's Inequality says that the probability space $2^{\mathbb{N}}$ with the fair coin probability measure satisfies

$$
\operatorname{Prob}\left(\left|\frac{\sum_{i=0}^{n-1} X(i)}{n}-\frac{1}{2}\right|>\epsilon\right)<\frac{2}{\exp 2 n \epsilon^{2}} .
$$

Use Hoeffding's Inequality to prove that if a point $X \in 2^{\mathbb{N}}$ is random (i.e., random in the sense of Martin-Löf), then $X$ obeys the Strong Law of Large Numbers:

$$
\frac{\sum_{i=0}^{n-1} X(i)}{n} \rightarrow \frac{1}{2} \quad \text { as } \quad n \rightarrow \infty .
$$

2. Prove that there exist weakly 1-random points in $2^{\mathbb{N}}$ which do not obey the Strong Law of Large Numbers.

Hint: Use finite approximation.
3. In problem 1, can you say anything about the rate of convergence to $1 / 2$ ?
4. Prove that if $X \oplus Y \in 2^{\mathbb{N}}$ is random (i.e., random in the sense of Martin-Löf), then $X \not ڭ_{T} Y$ and $Y \not ڭ_{T} X$.
5. Prove that there exist points $X, Y \in 2^{\mathbb{N}}$ such that $X \oplus Y$ is weakly 1-random yet $X \equiv_{T} Y$.
6. A set $B \subseteq \mathbb{N}$ is said to be biimmune if both $B$ and its complement $\mathbb{N} \backslash B$ are immune. Prove that if $X \in 2^{\mathbb{N}}$ is weakly 1-random then $X$ is the characteristic function of a biimmune set.
7. Let $f$ be a Turing oracle.

For each $i \in \mathbb{N}$ define

$$
U_{i}^{f}=\left\{X \in 2^{\mathbb{N}} \mid \varphi_{i}^{(1), f \oplus X}(0) \downarrow\right\}
$$

Thus $U_{i}^{f}, i=0,1,2, \ldots$ is the standard recursive enumeration of all $\Sigma_{1}^{0, f}$ subsets of $2^{\mathbb{N}}$.
Given a sequence of sets $V_{n} \subseteq 2^{\mathbb{N}}, n=0,1,2, \ldots$, prove that the following are pairwise equivalent.
(a) There exists a total recursive function $g$ such that $V_{n}=U_{g(n)}^{f}$ for all $n$.
(b) There exists a total $f$-recursive function $h$ such that $V_{n}=U_{h(n)}^{f}$ for all $n$.
(c) The predicate $P \subseteq 2^{\mathbb{N}} \times \mathbb{N}$ given by

$$
P(X, n) \equiv X \in V_{n}
$$

is $\Sigma_{1}^{0, f}$.
In this case we say that the sequence of sets $V_{n}, n=0,1,2, \ldots$ is uniformly $\Sigma_{1}^{0, f}$ or uniformly $\Sigma_{1}^{0}$ relative to $f$.

Note: This concept will be part of the definition of what it means for a point $X \in 2^{\mathbb{N}}$ to be random relative to the oracle $f$.

