Computability, Unsolvability, Randomness Math 497A: Homework #9

Stephen G. Simpson

Due Monday, October 29, 2007

1. Hoeffding's Inequality says that the probability space $2^{\mathbb{N}}$ with the fair coin probability measure satisfies

$$\operatorname{Prob}\left(\left|\frac{\sum_{i=0}^{n-1} X(i)}{n} - \frac{1}{2}\right| > \epsilon\right) < \frac{2}{\exp 2n\epsilon^2}.$$

Use Hoeffding's Inequality to prove that if a point $X \in 2^{\mathbb{N}}$ is random (i.e., random in the sense of Martin-Löf), then X obeys the Strong Law of Large Numbers:

$$\frac{\sum_{i=0}^{n-1} X(i)}{n} \to \frac{1}{2} \qquad \text{as} \qquad n \to \infty \,.$$

2. Prove that there exist weakly 1-random points in $2^{\mathbb{N}}$ which do not obey the Strong Law of Large Numbers.

Hint: Use finite approximation.

- 3. In problem 1, can you say anything about the rate of convergence to 1/2?
- 4. Prove that if $X \oplus Y \in 2^{\mathbb{N}}$ is *random* (i.e., random in the sense of Martin-Löf), then $X \not\leq_T Y$ and $Y \not\leq_T X$.
- 5. Prove that there exist points $X, Y \in 2^{\mathbb{N}}$ such that $X \oplus Y$ is weakly 1-random yet $X \equiv_T Y$.
- 6. A set $B \subseteq \mathbb{N}$ is said to be *biimmune* if both B and its complement $\mathbb{N} \setminus B$ are immune. Prove that if $X \in 2^{\mathbb{N}}$ is weakly 1-random then X is the characteristic function of a biimmune set.

7. Let f be a Turing oracle.

For each $i \in \mathbb{N}$ define

$$U_i^f = \{ X \in 2^{\mathbb{N}} \mid \varphi_i^{(1), f \oplus X}(0) \downarrow \}.$$

Thus U_i^f , i = 0, 1, 2, ... is the standard recursive enumeration of all $\Sigma_1^{0,f}$ subsets of $2^{\mathbb{N}}$.

Given a sequence of sets $V_n \subseteq 2^{\mathbb{N}}$, $n = 0, 1, 2, \ldots$, prove that the following are pairwise equivalent.

- (a) There exists a total recursive function g such that $V_n = U_{g(n)}^f$ for all n.
- (b) There exists a total *f*-recursive function *h* such that $V_n = U_{h(n)}^f$ for all *n*.
- (c) The predicate $P \subseteq 2^{\mathbb{N}} \times \mathbb{N}$ given by

$$P(X,n) \equiv X \in V_n$$

is $\Sigma_1^{0,f}$.

In this case we say that the sequence of sets V_n , n = 0, 1, 2, ... is uniformly $\Sigma_1^{0,f}$ or uniformly Σ_1^0 relative to f.

Note: This concept will be part of the definition of what it means for a point $X \in 2^{\mathbb{N}}$ to be random relative to the oracle f.