Computability, Unsolvability, Randomness Math 497A: Homework #8

Stephen G. Simpson

Due Monday, October 22, 2007

1. Let $K(\tau)$ denote the prefix-free complexity of a bitstring τ . Prove that

$$K(\tau_1 {}^{\smallfrown} \tau_2) \leq K(\tau_1) + K(\tau_2) + O(1)$$
.

- 2. (a) Give an example of a subset of $\mathbb{N}^{\mathbb{N}}$ which is Σ_2^0 but not $\Sigma_1^{0,0'}$.
 - (b) Can you replace $\mathbb{N}^{\mathbb{N}}$ by $2^{\mathbb{N}}$ here?

Note: Recall Post's Theorem, which says (among other things) that a subset of \mathbb{N} is Σ_2^0 if and only if it is $\Sigma_1^{0,0'}$. The point of (a) is to show that Post's Theorem does not hold for subsets of $\mathbb{N}^{\mathbb{N}}$.

Hint: Recall that a set is open if and only if it is Σ_1^0 relative to an oracle. Therefore, it suffices to find a set which is Σ_2^0 and not open.

- 3. A real number is said to be *left recursively enumerable* (respectively *right recursively enumerable*) if it is the limit of an increasing (respectively decreasing) recursive sequence of rational numbers.
 - (a) If A is a recursively enumerable subset of \mathbb{N} , show that the real number $\sum_{n\in A} 1/2^n$ is left recursively enumerable.
 - (b) Show that there exist real numbers which are left recursively enumerable but not recursive.
 - (c) Show that a real number is recursive if and only if it is both left recursively enumerable and right recursively enumerable.
- 4. Let P be a Π_1^0 subset of $2^{\mathbb{N}}$. We have seen how to construct a recursive tree $T \subseteq 2^{<\mathbb{N}}$ such that $P = \{\text{paths through } T\}$. For each $n = 0, 1, 2, \ldots$ let T_n be the set of strings in T of length n.
 - (a) Show that T_n is prefix-free.

(b) Show that the set

$$V_n = \bigcup_{\tau \in T_n} N_{\tau}$$

is Δ_1^0 . (Note that V_n is a subset of $2^{\mathbb{N}}$.)

(c) Show that P is the intersection of the V_n 's. In other words,

$$P = \bigcap_{n=0}^{\infty} V_n .$$

(d) Show that the measure of P is given by

$$\mu(P) = \lim_{n \to \infty} \frac{|T_n|}{2^n} .$$

Here $|T_n|$ denotes the number of strings in T_n .

- (e) Show that the real number $\mu(P)$ is right recursively enumerable.
- (f) Show that $\mu(P)$ is not necessarily a recursive real number.
- 5. Given a nonempty Π^0_1 set $P \subseteq 2^{\mathbb{N}}$, can we always find a member of P which is recursive?

Hint: Consider a recursively inseparable pair of r.e. sets.

6. Two sets $P, Q \subseteq \mathbb{N}^{\mathbb{N}}$ are said to be *Turing isomorphic* if the members of P and Q have the same Turing degrees, i.e.,

$$\{\deg_T(f) \mid f \in P\} = \{\deg_T(g) \mid g \in Q\}$$
.

- (a) Prove that every Π_2^0 subset of $\mathbb{N}^{\mathbb{N}}$ is Turing isomorphic to a Π_1^0 subset of $\mathbb{N}^{\mathbb{N}}$.
- (b) Prove that every Π_2^0 subset of $\mathbb{N}^{\mathbb{N}}$ is Turing isomorphic to a Π_2^0 subset of $2^{\mathbb{N}}$.
- (c) Is every Π_2^0 subset of $2^{\mathbb{N}}$ Turing isomorphic to a Π_1^0 subset of $2^{\mathbb{N}}$? Justify your answer.

Hints: (a) If $\forall x \exists y R(f, x, y)$ holds, map f to $f \oplus g$ where $g(x) = \mu y R(f, x, y)$. (b) Map f to the characteristic function of the set $G_f = \{3^x 5^y \mid f(x) = y\} = \text{the "graph" of } f$.