Computability, Unsolvability, Randomness Math 497A: Homework \#6
 Stephen G. Simpson

Due Monday, October 8, 2007

For each natural number n define

$$
C_{\varphi}(n)=\mu e\left(\varphi_{e}^{(1)}(0) \simeq n\right) .
$$

Intuitively, $C_{\varphi}(n)$ is the smallest "description" of n in terms of our standard enumeration of the 1-place partial recursive functions, $\varphi_{e}^{(1)}, e=0,1,2, \ldots$. Note that C_{φ} is a total 1-place function, but it is not recursive.

Consider the set

$$
S=\left\{n \mid C_{\varphi}(n)<\log \log \log n\right\} .
$$

Intuitively, S is the set of all n such that n has a (relatively) small "description." For example, the number

$$
n=(10 \text { to the } 10 \text { to the } 10 \text { to the } 10 \text { to the } 1,000,000,000 \text { power })
$$

belongs to S because, although it is very large, it is also very easy to describe.
Prove that S is a simple set. This means:

1. S is recursively enumerable.
2. The complement of S is infinite.
3. The complement of S includes no infinite recursively enumerable set.
