Computability, Unsolvability, Randomness Math 497A: Homework #5

Stephen G. Simpson

Due Monday, October 1, 2007

1. Recall that a simple r.e. set is neither recursive nor many-one complete. Use Post's Theorem plus relativization to generalize this to higher levels of the arithmetical hierarchy.

Conclude that for each $n \geq 1$ there exist Σ_n^0 sets which are neither many-one complete (within the class of Σ_n^0 sets) nor Δ_n^0 .

- 2. (a) Given a Σ_1^0 predicate P(x, y) such that $\forall x \exists y P(x, y)$ holds, prove that there exists a recursive function f(x) such that $\forall x P(x, f(x))$ holds.
 - (b) Use Post's Theorem plus relativization to generalize the previous result to higher levels of the arithmetical hierarchy. Conclude that for all $n \ge 1$, given a Σ_n^0 predicate P(x, y) such that $\forall x \exists y P(x, y)$ holds, there exists a Δ_n^0 function f(x) such that $\forall x P(x, f(x))$ holds.
- 3. Prove the following:
 - (a) Every infinite recursively enumerable set includes an infinite recursive set.
 - (b) Every infinite recursive set includes a recursively enumerable set which is not recursive.
 - (c) Every infinite recursive set is the union of two disjoint infinite recursive sets.
 - (d) Every infinite recursively enumerable set is the union of two disjoint infinite recursively enumerable sets.
 - (e) (Extra Credit) Every recursively enumerable set which is nonrecursive is the union of two disjoint recursively enumerable sets which are nonrecursive.

4. Given a nonrecursive recursively enumerable set A, prove that we can find a simple set B such that $A \equiv_T B$.

Hint: Use a deficiency set.

5. Prove the following theorem:

Given a Turing degree $\mathbf{d} \geq \mathbf{0}',$ we can find a Turing degree \mathbf{a} such that $\mathbf{a}' = \mathbf{d}.$

Thus, the range of the Turing jump operator consists precisely of the Turing degrees which are $\geq 0'$.

Hint: Use the technique of finite approximation.