Computability, Unsolvability, Randomness Math 497A: Homework \#4

Stephen G. Simpson

Due Monday, September 24, 2007

In this set of exercises we explore the structure of the Turing degrees. Given two Turing degrees \mathbf{a} and \mathbf{b}, we know that the least upper bound $\sup (\mathbf{a}, \mathbf{b})$ always exists. Exercises 2, 4, and 7 below show that the greatest lower bound $\inf (\mathbf{a}, \mathbf{b})$ sometimes exists and sometimes does not exist.

For any Turing oracle f we have

$$
f^{\prime}=H^{f}=\left\{x \mid \varphi_{x}^{(1), f}(0) \downarrow\right\}=\text { the Halting Problem relative to } f
$$

We know that f^{\prime} is a complete Σ_{1}^{0} set relative to the oracle f. For any Turing degree $\mathbf{a}=\operatorname{deg}_{T}(f)$ we define

$$
\mathbf{a}^{\prime}=\operatorname{deg}_{T}\left(f^{\prime}\right)=\text { the Turing jump of } \mathbf{a} .
$$

Clearly $\mathbf{a}<\mathbf{a}^{\prime}$ holds for all \mathbf{a}. Thus, starting with any Turing degree \mathbf{a}, we have an ascending sequence of Turing degrees

$$
\mathbf{a}<\mathbf{a}^{\prime}<\mathbf{a}^{\prime \prime}<\cdots<\mathbf{a}^{(n)}<\mathbf{a}^{(n+1)}<\cdots
$$

In particular, starting with the zero Turing degree 0, we have the ascending sequence

$$
\mathbf{0}<\mathbf{0}^{\prime}<\mathbf{0}^{\prime \prime}<\cdots<\mathbf{0}^{(n)}<\mathbf{0}^{(n+1)}<\cdots
$$

corresponding to the arithmetical hierarchy.

1. Given Turing oracles f and g, prove that the following conditions are pairwise equivalent:
(a) $f \leq_{T} g$
(b) $H^{f} \leq_{m} H^{g}$
(c) all partial f-recursive functions are partial g-recursive
(d) all total f-recursive functions are g-recursive.
2. Use finite approximations to construct Turing degrees \mathbf{a}, \mathbf{b} such that $\mathbf{a}>\mathbf{0}$ and $\mathbf{b}>\mathbf{0}$ and $\inf (\mathbf{a}, \mathbf{b})=\mathbf{0}$.
3. Use finite approximations to construct Turing degrees \mathbf{a}, \mathbf{b} such that $\mathbf{a}<\mathbf{0}^{\prime}$ and $\mathbf{b}<\mathbf{0}^{\prime}$ and $\sup (\mathbf{a}, \mathbf{b})=\mathbf{0}^{\prime}$.
4. Combine and generalize Exercises 2 and 3 to prove the following:

Given two Turing degrees \mathbf{c}, \mathbf{d} such that $\mathbf{c}^{\prime} \leq \mathbf{d}$, we can find two Turing degrees \mathbf{a}, \mathbf{b} such that $\inf (\mathbf{a}, \mathbf{b})=\mathbf{c}$ and $\sup (\mathbf{a}, \mathbf{b})=\mathbf{d}$.
5. Prove the following result.

Given an ascending sequence of Turing degrees

$$
\mathbf{d}_{0}<\mathbf{d}_{1}<\cdots<\mathbf{d}_{n}<\mathbf{d}_{n+1}<\cdots
$$

we can find a pair of Turing degrees \mathbf{a}, \mathbf{b} such that for all Turing degrees \mathbf{c}

$$
\exists n\left(\mathbf{c} \leq \mathbf{d}_{n}\right) \quad \text { if and only if } \quad \mathbf{c} \leq \mathbf{a} \text { and } \mathbf{c} \leq \mathbf{b}
$$

6. Use the result of Exercise 5 to prove that no ascending sequence of Turing degrees has a least upper bound.
7. For any pair of Turing degrees \mathbf{a}, \mathbf{b} as in Exercise 5, prove that the greatest lower bound $\inf (\mathbf{a}, \mathbf{b})$ does not exist.
