Computability, Unsolvability, Randomness Math 497A: Homework #4

Stephen G. Simpson

Due Monday, September 24, 2007

In this set of exercises we explore the structure of the Turing degrees. Given two Turing degrees \mathbf{a} and \mathbf{b} , we know that the least upper bound $\sup(\mathbf{a}, \mathbf{b})$ always exists. Exercises 2, 4, and 7 below show that the greatest lower bound $\inf(\mathbf{a}, \mathbf{b})$ sometimes exists and sometimes does not exist.

For any Turing oracle f we have

 $f' = H^f = \{x \mid \varphi_x^{(1),f}(0) \downarrow\} =$ the Halting Problem relative to f.

We know that f' is a complete Σ_1^0 set relative to the oracle f. For any Turing degree $\mathbf{a} = \deg_T(f)$ we define

$$\mathbf{a}' = \deg_T(f') =$$
the Turing jump of \mathbf{a} .

Clearly $\mathbf{a} < \mathbf{a}'$ holds for all \mathbf{a} . Thus, starting with any Turing degree \mathbf{a} , we have an ascending sequence of Turing degrees

$$\mathbf{a} < \mathbf{a}' < \mathbf{a}'' < \cdots < \mathbf{a}^{(n)} < \mathbf{a}^{(n+1)} < \cdots$$

In particular, starting with the zero Turing degree $\mathbf{0}$, we have the ascending sequence

 $0 < 0' < 0'' < \cdots < 0^{(n)} < 0^{(n+1)} < \cdots$

corresponding to the arithmetical hierarchy.

- 1. Given Turing oracles f and g, prove that the following conditions are pairwise equivalent:
 - (a) $f \leq_T g$
 - (b) $H^f \leq_m H^g$
 - (c) all partial f-recursive functions are partial g-recursive
 - (d) all total f-recursive functions are g-recursive.

- 2. Use finite approximations to construct Turing degrees \mathbf{a}, \mathbf{b} such that $\mathbf{a} > \mathbf{0}$ and $\mathbf{b} > \mathbf{0}$ and $\inf(\mathbf{a}, \mathbf{b}) = \mathbf{0}$.
- 3. Use finite approximations to construct Turing degrees \mathbf{a}, \mathbf{b} such that $\mathbf{a} < \mathbf{0}'$ and $\mathbf{b} < \mathbf{0}'$ and $\sup(\mathbf{a}, \mathbf{b}) = \mathbf{0}'$.
- 4. Combine and generalize Exercises 2 and 3 to prove the following:

Given two Turing degrees \mathbf{c}, \mathbf{d} such that $\mathbf{c}' \leq \mathbf{d}$, we can find two Turing degrees \mathbf{a}, \mathbf{b} such that $\inf(\mathbf{a}, \mathbf{b}) = \mathbf{c}$ and $\sup(\mathbf{a}, \mathbf{b}) = \mathbf{d}$.

5. Prove the following result.

Given an ascending sequence of Turing degrees

$$\mathbf{d}_0 < \mathbf{d}_1 < \cdots < \mathbf{d}_n < \mathbf{d}_{n+1} < \cdots$$

we can find a pair of Turing degrees \mathbf{a}, \mathbf{b} such that for all Turing degrees \mathbf{c}

$$\exists n (\mathbf{c} \leq \mathbf{d}_n)$$
 if and only if $\mathbf{c} \leq \mathbf{a}$ and $\mathbf{c} \leq \mathbf{b}$.

- 6. Use the result of Exercise 5 to prove that no ascending sequence of Turing degrees has a least upper bound.
- 7. For any pair of Turing degrees \mathbf{a}, \mathbf{b} as in Exercise 5, prove that the greatest lower bound $\inf(\mathbf{a}, \mathbf{b})$ does not exist.