Computability, Unsolvability, Randomness Math 497A: Homework \#3

Stephen G. Simpson

Due Monday, September 17, 2007

Recall that $W_{x}=\operatorname{dom}\left(\varphi_{x}^{(1)}\right)$. Note that $W_{x}, x=0,1,2, \ldots$, is the standard recursive enumeration of the recursively enumerable subsets of \mathbb{N}.

1. Which many-one reducibility relations hold or do not hold among the following sets and their complements?

$$
\begin{aligned}
K & =\left\{x \mid x \in W_{x}\right\} \\
H & =\left\{x \mid 0 \in W_{x}\right\} \\
T & =\left\{x \mid W_{x}=\mathbb{N}\right\} \\
E & =\left\{x \mid W_{x}=\emptyset\right\} \\
S & =\left\{x \mid W_{x} \text { is infinite }\right\}
\end{aligned}
$$

Prove your answers.
Hint: Each of these sets is many-one complete within an appropriate level of the arithmetical hierarchy.
2. A set $P \subseteq \mathbb{N}$ is said to be productive if there exists a total recursive function $h(x)$ such that for all x, if $W_{x} \subseteq P$ then $h(x) \notin W_{x}$ and $h(x) \in P$. Such a function is called a productive function for P.

A creative set is a recursively enumerable set whose complement is productive.
Prove the following.
(a) K is creative.
(b) If A and B are recursively enumerable sets and $A \leq_{m} B$ and A is creative, then B is creative.
(c) If B is recursively enumerable and many-one complete, then B is creative.
(d) (Extra Credit) If B is creative, then B is many-one complete.
(e) (Extra Credit) If A and B are creative, then A and B are recursively isomorphic. This means that there exists a recursive permutation of \mathbb{N}, call it g, such that $x \in A$ if and only if $g(x) \in B$, for all x.
3. A set $I \subseteq \mathbb{N}$ is said to be immune if I is infinite yet includes no infinite recursively enumerable set.
A simple set is a recursively enumerable set whose complement is immune.
Prove the following.
(a) If A is simple, then A is not recursive.
(b) If A is simple, then A is not creative.
4. Let $f: \mathbb{N} \xrightarrow{1-1} \mathbb{N}$ be a one-to-one total recursive function such that the range of f is nonrecursive. The deficiency set of f is defined as

$$
D_{f}=\{x \mid \exists y(x<y \wedge f(x)>f(y))\} .
$$

Prove that D_{f} is a simple set.
Conclude that there exist recursively enumerable sets which are neither recursive nor many-one complete.
5. (Extra Credit) Generalize Exercises 2, 3, 4 to higher levels of the arithmetical hierarchy. Conclude that for each $n \geq 1$ there exist Σ_{n}^{0} sets which are neither Δ_{n}^{0} nor many-one complete within the class of Σ_{n}^{0} sets.

