Computability, Unsolvability, Randomness Math 497A: Homework #3

Stephen G. Simpson

Due Monday, September 17, 2007

Recall that $W_x = \text{dom}(\varphi_x^{(1)})$. Note that W_x , $x = 0, 1, 2, \ldots$, is the standard recursive enumeration of the recursively enumerable subsets of \mathbb{N} .

1. Which many-one reducibility relations hold or do not hold among the following sets and their complements?

 $K = \{x \mid x \in W_x\}$ $H = \{x \mid 0 \in W_x\}$ $T = \{x \mid W_x = \mathbb{N}\}$ $E = \{x \mid W_x = \emptyset\}$ $S = \{x \mid W_x \text{ is infinite}\}$

Prove your answers.

Hint: Each of these sets is many-one complete within an appropriate level of the arithmetical hierarchy.

2. A set $P \subseteq \mathbb{N}$ is said to be *productive* if there exists a total recursive function h(x) such that for all x, if $W_x \subseteq P$ then $h(x) \notin W_x$ and $h(x) \in P$. Such a function is called a *productive function* for P.

A *creative set* is a recursively enumerable set whose complement is productive.

Prove the following.

- (a) K is creative.
- (b) If A and B are recursively enumerable sets and $A \leq_m B$ and A is creative, then B is creative.
- (c) If B is recursively enumerable and many-one complete, then B is creative.

- (d) (Extra Credit) If B is creative, then B is many-one complete.
- (e) (Extra Credit) If A and B are creative, then A and B are recursively isomorphic. This means that there exists a recursive permutation of \mathbb{N} , call it g, such that $x \in A$ if and only if $g(x) \in B$, for all x.
- 3. A set $I \subseteq \mathbb{N}$ is said to be *immune* if I is infinite yet includes no infinite recursively enumerable set.

A *simple set* is a recursively enumerable set whose complement is immune.

Prove the following.

- (a) If A is simple, then A is not recursive.
- (b) If A is simple, then A is not creative.
- 4. Let $f : \mathbb{N} \xrightarrow{1-1} \mathbb{N}$ be a one-to-one total recursive function such that the range of f is nonrecursive. The *deficiency set* of f is defined as

$$D_f = \{x \mid \exists y \, (x < y \land f(x) > f(y))\}.$$

Prove that D_f is a simple set.

Conclude that there exist recursively enumerable sets which are neither recursive nor many-one complete.

5. (Extra Credit) Generalize Exercises 2, 3, 4 to higher levels of the arithmetical hierarchy. Conclude that for each $n \ge 1$ there exist Σ_n^0 sets which are neither Δ_n^0 nor many-one complete within the class of Σ_n^0 sets.