Computability, Unsolvability, Randomness Math 497A: Homework #2

Stephen G. Simpson

Due Monday, September 10, 2007

1. Let r be a positive real number. Prove that r is computable if and only if the number-theoretic function

$$f(n) =$$
the *n*th decimal digit of r

is computable.

2. Consider the 2-place computable number-theoretic function f(x, y) = x + y. Exhibit three different indices of f.

(By an *index* of a partial recursive function, we mean the Gödel number of some program which computes the function.)

3. If f is a computable permutation of \mathbb{N} , prove that the inverse permutation f^{-1} is also computable.

(Here $f^{-1}(y) = x$ if and only if f(x) = y. By a computable permutation of \mathbb{N} we mean a computable 1-place function $f : \mathbb{N} \to \mathbb{N}$ which maps \mathbb{N} one-to-one onto \mathbb{N} .)

- 4. Generalize the previous exercise as follows. Prove that if ψ is a 1-place partial recursive function which is one-to-one, then the inverse function ψ^{-1} is again partial recursive.
- 5. Consider the sets

$$K_n = \{ x \in \mathbb{N} \mid \varphi_x^{(1)}(x) \simeq n \}$$

where $n = 0, 1, 2, \ldots$ Show that the sets K_0 and K_1 are recursively inseparable. More generally, show that K_m and K_n are recursively inseparable for all m, n such that $m \neq n$.

(Two sets $A, B \subseteq \mathbb{N}$ are said to be *recursively separable* if there exists a recursive function $f : \mathbb{N} \to \{0, 1\}$ such that f(n) = 1 for all $n \in A$, and

f(n) = 0 for all $n \in B$. Otherwise, A and B are said to be *recursively inseparable*.)

- 6. Let $\psi(x)$ and $\theta(x)$ be 1-place partial recursive functions. We say that ψ is reducible to θ if there exists a 1-place total recursive function h(x) such that $\psi(x) \simeq \theta(h(x))$ for all $x \in \mathbb{N}$. We refer to h(x) as a reduction function, and we say that h reduces ψ to θ . We say that θ is universal if all 1-place partial recursive functions are reducible to θ .
 - (a) Prove that the 1-place partial recursive function $\varphi_x^{(1)}(x)$ is universal.
 - (b) Give some additional examples of 1-place partial recursive functions which are universal.
 - (c) Prove that if θ is universal then the domain of θ is not recursive. (The *domain of* θ is defined to be the set dom(θ) = { $x \mid \theta(x) \downarrow$ }.)
 - (d) Construct a 1-place partial recursive function θ which is universal via linear reduction functions.

(This means that each 1-place partial recursive function is reducible to θ by means of a reduction function which is linear. We say that h(x) is *linear* if there exist constants a and b such that h(x) = ax + b for all x.)

7. (Extra Credit). Prove that any two universal partial recursive functions θ_1 and θ_2 are *recursively isomorphic*. This means that there exists a computable permutation of \mathbb{N} , call it f, such that

 $\theta_1(x) \simeq y$ if and only if $\theta_2(f(x)) \simeq f(y)$

for all x and y.