Computability, Unsolvability, Randomness Math 497A: Homework \#2

Stephen G. Simpson

Due Monday, September 10, 2007

1. Let r be a positive real number. Prove that r is computable if and only if the number-theoretic function

$$
f(n)=\text { the } n \text {th decimal digit of } r
$$

is computable.
2. Consider the 2-place computable number-theoretic function $f(x, y)=$ $x+y$. Exhibit three different indices of f.
(By an index of a partial recursive function, we mean the Gödel number of some program which computes the function.)
3. If f is a computable permutation of \mathbb{N}, prove that the inverse permutation f^{-1} is also computable.
(Here $f^{-1}(y)=x$ if and only if $f(x)=y$. By a computable permutation of \mathbb{N} we mean a computable 1-place function $f: \mathbb{N} \rightarrow \mathbb{N}$ which maps \mathbb{N} one-to-one onto \mathbb{N}.)
4. Generalize the previous exercise as follows. Prove that if ψ is a 1-place partial recursive function which is one-to-one, then the inverse function ψ^{-1} is again partial recursive.
5. Consider the sets

$$
K_{n}=\left\{x \in \mathbb{N} \mid \varphi_{x}^{(1)}(x) \simeq n\right\}
$$

where $n=0,1,2, \ldots$. Show that the sets K_{0} and K_{1} are recursively inseparable. More generally, show that K_{m} and K_{n} are recursively inseparable for all m, n such that $m \neq n$.
(Two sets $A, B \subseteq \mathbb{N}$ are said to be recursively separable if there exists a recursive function $f: \mathbb{N} \rightarrow\{0,1\}$ such that $f(n)=1$ for all $n \in A$, and
$f(n)=0$ for all $n \in B$. Otherwise, A and B are said to be recursively inseparable.)
6. Let $\psi(x)$ and $\theta(x)$ be 1-place partial recursive functions. We say that ψ is reducible to θ if there exists a 1-place total recursive function $h(x)$ such that $\psi(x) \simeq \theta(h(x))$ for all $x \in \mathbb{N}$. We refer to $h(x)$ as a reduction function, and we say that h reduces ψ to θ. We say that θ is universal if all 1-place partial recursive functions are reducible to θ.
(a) Prove that the 1-place partial recursive function $\varphi_{x}^{(1)}(x)$ is universal.
(b) Give some additional examples of 1-place partial recursive functions which are universal.
(c) Prove that if θ is universal then the domain of θ is not recursive. (The domain of θ is defined to be the set $\operatorname{dom}(\theta)=\{x \mid \theta(x) \downarrow\}$.)
(d) Construct a 1-place partial recursive function θ which is universal via linear reduction functions.
(This means that each 1-place partial recursive function is reducible to θ by means of a reduction function which is linear. We say that $h(x)$ is linear if there exist constants a and b such that $h(x)=a x+b$ for all x.)
7. (Extra Credit). Prove that any two universal partial recursive functions θ_{1} and θ_{2} are recursively isomorphic. This means that there exists a computable permutation of \mathbb{N}, call it f, such that

$$
\theta_{1}(x) \simeq y \quad \text { if and only if } \quad \theta_{2}(f(x)) \simeq f(y)
$$

for all x and y.

