Computability, Unsolvability, Randomness Math 497A: Homework \#1

Stephen G. Simpson

Due Tuesday, September 4, 2007

1. Exhibit a register machine program which computes the exponential function, $\exp (x, y)=x^{y}$. Remember that the variables x and y range over \mathbb{N}, the set of natural numbers. Note that $x^{0}=1$ for all x, even for $x=0$.
2. Exhibit a register machine program which computes the function

$$
\operatorname{Rem}(y, x)=\text { the remainder of } y \text { on division by } x .
$$

For example, $\operatorname{Rem}(17,5)=2$.
3. Assume that $P(x, y, z)$ is a 3 -place predicate which is computable. Consider the 2-place partial function $\psi(x, y)$ defined as follows:
$\psi(x, y) \simeq$ the least z such that $P(x, y, z)$ holds, if such a z exists. If such a z does not exist, then $\psi(x, y)$ is undefined.

Use register machine programs to prove that the function ψ is computable. (More precisely, ψ is partial recursive.)
Hint: Since P is a computable predicate, we may assume that we have a program \mathcal{P} which computes the characteristic function of P. Show how to embed \mathcal{P} (or perhaps a variant of \mathcal{P}) into a larger program, call it \mathcal{Q}, such that \mathcal{Q} computes ψ. The idea of \mathcal{Q} is that, given x and y, $\mathcal{Q}(x, y)$ searches sequentially through the integers $z=0, z=1, z=2$, \ldots, to find the first z such that $P(x, y, z)$ holds. In particular, \mathcal{Q} will have the property that, for all x and $y, \mathcal{Q}(x, y)$ eventually halts if and only if $P(x, y, z)$ holds for some z.
4. Use the results of Problems 2 and 3 to prove that the 2-place function $\operatorname{LCM}(x, y)=$ the least common multiple of x and y is computable. Deduce that the 2-place function $\operatorname{GCD}(x, y)=$ the greatest common divisor of x and y, is also computable.
5. (Approximating the square root of 2.) Consider successive rational approximations of $\sqrt{2}$ given by Newton's method:

$$
x_{0}=1, \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

where $f(x)=x^{2}-2$. The first few values are $x_{0}=1, x_{1}=3 / 2$, $x_{2}=17 / 12, x_{3}=577 / 408$. Let $a(n)$ and $b(n)$ respectively be the numerator and denominator of x_{n}. Thus $a(n)$ and $b(n)$ are 1-place number-theoretic functions. The first few values are $a(0)=b(0)=1$, $a(1)=3, b(1)=2, a(3)=17, b(3)=12, a(3)=577, b(3)=408$. Use primitive recursion to prove that the functions $a(n)$ and $b(n)$ are computable.
6. A positive real number r is said to be computable if there exist computable sequences of positive integers $a_{n}, b_{n}, n=0,1,2, \ldots$, such that

$$
r=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

and in addition

$$
\left|r-\frac{a_{n}}{b_{n}}\right|<\frac{1}{2^{n}}
$$

for all $n \in \mathbb{N}$. Give a convincing argument that all of the standard examples of positive real numbers including $\sqrt{2}=1.41421 \cdots, e=$ $2.71828 \cdots, \pi=3.14159 \cdots$, etc., are computable.
7. Prove that the sum, product, and quotient of two computable positive real numbers are computable.

