Computability, Unsolvability, Randomness Math 497A: Homework #1

Stephen G. Simpson

Due Tuesday, September 4, 2007

- 1. Exhibit a register machine program which computes the exponential function, $\exp(x, y) = x^y$. Remember that the variables x and y range over N, the set of natural numbers. Note that $x^0 = 1$ for all x, even for x = 0.
- 2. Exhibit a register machine program which computes the function

 $\operatorname{Rem}(y, x) = \operatorname{the remainder of } y \text{ on division by } x.$

For example, Rem(17,5)=2.

3. Assume that P(x, y, z) is a 3-place predicate which is computable. Consider the 2-place partial function $\psi(x, y)$ defined as follows:

 $\psi(x, y) \simeq$ the least z such that P(x, y, z) holds, if such a z exists. If such a z does not exist, then $\psi(x, y)$ is undefined.

Use register machine programs to prove that the function ψ is computable. (More precisely, ψ is partial recursive.)

Hint: Since P is a computable predicate, we may assume that we have a program \mathcal{P} which computes the characteristic function of P. Show how to embed \mathcal{P} (or perhaps a variant of \mathcal{P}) into a larger program, call it \mathcal{Q} , such that \mathcal{Q} computes ψ . The idea of \mathcal{Q} is that, given x and y, $\mathcal{Q}(x,y)$ searches sequentially through the integers z = 0, z = 1, z = 2,..., to find the first z such that P(x, y, z) holds. In particular, \mathcal{Q} will have the property that, for all x and y, $\mathcal{Q}(x, y)$ eventually halts if and only if P(x, y, z) holds for some z.

4. Use the results of Problems 2 and 3 to prove that the 2-place function LCM(x, y) = the least common multiple of x and y is computable. Deduce that the 2-place function GCD(x, y) = the greatest common divisor of x and y, is also computable.

5. (Approximating the square root of 2.) Consider successive rational approximations of $\sqrt{2}$ given by Newton's method:

$$x_0 = 1,$$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

where $f(x) = x^2 - 2$. The first few values are $x_0 = 1$, $x_1 = 3/2$, $x_2 = 17/12$, $x_3 = 577/408$. Let a(n) and b(n) respectively be the numerator and denominator of x_n . Thus a(n) and b(n) are 1-place number-theoretic functions. The first few values are a(0) = b(0) = 1, a(1) = 3, b(1) = 2, a(3) = 17, b(3) = 12, a(3) = 577, b(3) = 408. Use primitive recursion to prove that the functions a(n) and b(n) are computable.

6. A positive real number r is said to be *computable* if there exist computable sequences of positive integers $a_n, b_n, n = 0, 1, 2, \ldots$, such that

$$r = \lim_{n \to \infty} \frac{a_n}{b_n}$$

and in addition

$$\left|r - \frac{a_n}{b_n}\right| < \frac{1}{2^n}$$

for all $n \in \mathbb{N}$. Give a convincing argument that all of the standard examples of positive real numbers including $\sqrt{2} = 1.41421 \cdots$, $e = 2.71828 \cdots$, $\pi = 3.14159 \cdots$, etc., are computable.

7. Prove that the sum, product, and quotient of two computable positive real numbers are computable.