Math 485, Graph Theory: Midterm Exam Stephen G. Simpson Monday, November 9, 2009 8 problems

- 1. (a) If G is a k-regular graph with n vertices, how many edges does G have?
 - (b) Draw a 3-regular graph with 11 vertices or prove that no such graph exists.
- 2. Recall that Q_3 is the 3-cube. How many automorphisms does Q_3 have? Justify your answer.
- 3. True or false.
 - (a) The number of spanning trees in the n-cycle is n.
 - (b) Dijkstra's algorithm applied to a connected weighted graph produces a minimum-weight spanning tree.
 - (c) Every connected bipartite graph contains a cycle of even length.
 - (d) The Petersen graph has 25 edges.
 - (e) A weakly connected digraph with $\deg^+(v) = \deg^-(v)$ for all vertices v is strongly connected.
- 4. It is known that K_4 has 16 spanning trees. Prove this using the Matrix Tree Theorem.
- 5. Let G be an acyclic digraph with vertices u, v, w consisting of k pairwise disjoint uv-paths plus l pairwise disjoint vw-paths. Consider the 2-person positional game starting at u. Under what conditions does the first player have a winning strategy?
- 6. It is known that K_n has n^{n-2} spanning trees. If e is an edge of K_n , how many spanning trees does $K_n e$ have? Justify your answer.
- 7. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... where each number is obtained by adding the previous two numbers. Let ϕ_n be the *n*th Fibonacci number. Thus $\phi_1 = 1$, $\phi_2 = 1$, $\phi_3 = 2$, $\phi_4 = 3$, $\phi_5 = 5$, $\phi_6 = 8$, $\phi_7 = 13$, etc.
 - (a) Write a recursion formula for ϕ_n .
 - (b) Solve your recursion to obtain an explicit formula for ϕ_n .
 - (c) Find $\lim_{n\to\infty} \frac{\phi_{n+1}}{\phi_n}$.
- 8. Consider a weighted bipartite graph with weights as indicated:

Use the Hungarian algorithm to find a matching of maximum weight and a weighted covering of minimum cost. Show all of the intermediate steps, including weighted coverings and the equality subgraphs which are associated with them.