Math 312, Intro. to Real Analysis: Homework #2 Solutions

Stephen G. Simpson

Wednesday, February 4, 2009

The assignment consists of Exercises 4.1, 4.3, 4.7, 4.14, 5.3 in the Ross textbook. Each problem counts 10 points.

- 4.1 The sups of these sets are found in Exercise 4.3. In each case, if α is the sup of the set, then α , $\alpha + 1$, and $\alpha + 2$ are three different upper bounds of the set. If the set has no sup, then it has no upper bound.
- 4.3 The sups are: (a) 1, (b) 1, (c) 7, (d) π , (e) 1, (f) 0, (g) 3, (h) NO SUP, (i) 1, (j) 1, (k) NO SUP, (l) 2, (m) 2, (n) $\sqrt{2}$, (o) 0, (p) 10, (q) 16, (r) 1, (s) 1/2, (t) 2, (u) NO SUP, (v) 1/2, (w) 1/2.
- 4.7 Let S and T be nonempty bounded subsets of \mathbb{R} . The completeness property of \mathbb{R} implies that $\alpha = \sup S$ and $\beta = \sup T$ exist.
 - (a) Assume $S \subseteq T$. In other words, every x belonging to S also belongs to T.
 - i. Since β is an upper bound of T, every x belonging to S is $\leq \beta$. In other words, β is an upper bound of S. Since α is the *least* upper bound of S, it follows that $\alpha \leq \beta$. In other words, $\sup S \leq \sup T$.
 - ii. A similar argument shows that $\inf T \leq \inf S$.
 - iii. Since S is nonempty, let x be an element of S. By definition of inf and sup we have inf $S \le x \le \sup S$ for all such x.

Combining our results, we have $\inf T \leq \inf S \leq \sup S \leq \sup T$, Q.E.D.

- (b) $S \cup T$ is again a nonempty bounded subset of \mathbb{R} , so let $\gamma = \sup(S \cup T)$.
 - i. Since $S \subseteq S \cup T$, it follows¹ that $\alpha \leq \gamma$. Similarly, since $T \subseteq S \cup T$, it follows that $\beta \leq \gamma$. Combining these two inequalities, we have $\max\{\alpha,\beta\} \leq \gamma$.
 - ii. Conversely, given $\epsilon > 0$, we know that $\gamma \epsilon < \gamma$, hence $\gamma \epsilon$ is not an upper bound of $S \cup T$. Therefore, let z be such that $\gamma \epsilon < z$ and z belongs to $S \cup T$. If z belongs to S, then

¹by part (a) applied to S and $S \cup T$

 $\gamma - \epsilon < z \le \sup S = \alpha$. Similarly, if z belongs to T, then $\gamma - \epsilon < z \le \sup T = \beta$. In either case we have $\gamma - \epsilon < \max\{\alpha, \beta\}$. Since this inequality holds for all $\epsilon > 0$, it follows that $\gamma \le \max\{\alpha, \beta\}$.

Combining these two results, we see that $\gamma = \max\{\alpha, \beta\}$. In other words, $\sup(S \cup T) = \max\{\sup S, \sup T\}$, Q.E.D.

4.14 Let A and B be nonempty bounded subsets of \mathbb{R} . Let

$$S = A + B = \{a + b : a \text{ in } A, b \text{ in } B\}.$$

Let $\alpha = \sup A$, $\beta = \sup B$, and $\gamma = \sup(A + B)$.

- (a) Let $\epsilon > 0$ be given. Since $\alpha \epsilon/2 < \alpha = \sup A$, we can find a in A such that $\alpha \epsilon/2 < a$. Similarly, we can find b in B such that $\beta \epsilon/2 < b$. Let c = a + b. Then $(\alpha + \beta) \epsilon = (\alpha \epsilon/2) + (\beta \epsilon/2) < a + b = c$ and c belongs to A + B. It follows that $(\alpha + \beta) \epsilon < \sup(A + B) = \gamma$. Since this holds for all $\epsilon > 0$, if follows that $\alpha + \beta \le \gamma$.
- (b) Conversely, given c in A+B, we can find a in A and b in B such that c=a+b. Then $a \leq \sup A = \alpha$ and $b \leq \sup B = \beta$, hence $c=a+b \leq \alpha+\beta$. Thus $\alpha+\beta$ is an upper bound of A+B. Since γ is the least upper bound of A+B, it follows that $\gamma \leq \alpha+\beta$.

Combining these two results, we see that $\gamma = \alpha + \beta$. In other words, $\sup(A+B) = \sup A + \sup B$.

Similarly, it can be shown that $\inf(A + B) = \inf A + \inf B$.

5.3 For the unbounded sets in 4.1 we have (h) inf = 2, $\sup = \infty$, (k) inf = 0, $\sup = \infty$, (l) inf = $-\infty$, $\sup = 2$, (o) inf = $-\infty$, $\sup = 0$, (t) inf = $-\infty$, $\sup = 2$, (u) inf = 0, $\sup = \infty$. All of the other sets in 4.1 are bounded.