Final Exam – MATH 311W Section 003

Stephen G. Simpson Pennsylvania State University

December 15, 2011

There are 7 problems. For each problem, please exhibit your work leading to the solution of the problem. Please write neatly and do not show scratch work.

- 1. Exhibit a finite state automaton M, F with the following property: if s is any finite sequence of letters from the alphabet $\{a, b, c\}$, then M, F accepts s if and only if each of the letters a, b, c occurs at least once in s.
- 2. Consider the permutations $\pi = (123)(456789)$ and $\sigma = (34)$.
 - (a) What is the sign of π ?
 - (b) What is the order of π ?
 - (c) What is the shape of π ?
 - (d) Exhibit the permutation π^{-1} .
 - (e) Exhibit the permutation π^3 .
 - (f) Exhibit the permutations π^{43} and π^{48} .
 - (g) Exhibit π as a product of transpositions.
 - (h) Exhibit the permutation $\sigma^{-1}\pi\sigma$.
 - (i) Exhibit the permutations $\pi\sigma$ and $\sigma\pi$.
 - (j) Exhibit the cyclic decomposition of $\pi\sigma$.
- 3. True or false. Do not give reasons for your answers.
 - (a) For all integers $n \geq 2$ and all integers a, the multiplicative order of a modulo n is a divisor of $\phi(n)$.
 - (b) For all integers $n \geq 2$, the group $G_n = \mathbb{Z}_n^*$ is Abelian.
 - (c) For all integers $n \geq 2$, the permutation group S(n) is Abelian.

- (d) If $f: X \to Y$ is a bijection, then $f^{-1}: Y \to X$ exists and is a bijection.
- (e) The union of any two relations is a relation.
- (f) Given a set X and an equivalence relation E on X, there is a canonical injection $\phi: X \to X/E$.
- (g) For all finite sets X,Y,Z we have $|X\cup Y\cup Z|=|X|+|Y|+|Z|-|X\cap Y|-|Y\cap Z|-|X\cap Z|+|X\cap Y\cap Z|.$
- (h) Any permutation in S(n) can be written as a product of disjoint transpositions.
- (i) The inverse of any function is a relation.
- (j) Every relation is the inverse of some function.
- 4. Let x be a real variable. Let f and g be the functions defined $f(x) = x^2$ and g(x) = x + 5.
 - (a) What are the functions fg, gf, f^2 , g^2 , f^2g , g^2f , and f^2g^2 ?
 - (b) What are the domains and ranges of fg and gf?
- 5. Define the concept of disjoint permutations. Prove that for any two disjoint permutations π and σ we have $\pi\sigma = \sigma\pi$.
- 6. (a) Define what is meant by the shape of a permutation.
 - (b) Define what it means for two permutations to be conjugate.
 - (c) Explain the relationship between these two concepts.
 - (d) Illustrate your explanation with an example.
- 7. Prove that

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

holds for all positive integers n.