Solutions to graded exercises in Homework \#8
 Stephen G. Simpson
 March 5, 2011

These exercises are from $\S 2.9$ in the textbook.
$\S 2.9 \mathrm{Ex} .5$. In general, the coordinate vector of a given vector \mathbf{v} with respect to a given linearly independent set of vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ is defined to be the unique vector \mathbf{x} such that $\left[\mathbf{u}_{1} \cdots \mathbf{u}_{p}\right] \mathbf{x}=\mathbf{v}$. For this exercise, row reduction shows that

$$
\left[\begin{array}{rrr}
1 & -3 & 4 \\
5 & -7 & 10 \\
-3 & 5 & -7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 0.25 \\
0 & 1 & -1.25 \\
0 & 0 & 0
\end{array}\right]
$$

and this implies that the coordinate vector of $\left[\begin{array}{r}4 \\ 10 \\ -7\end{array}\right]$ with respect to the linearly independent set $\left[\begin{array}{r}1 \\ 5 \\ -3\end{array}\right],\left[\begin{array}{r}-3 \\ -7 \\ 5\end{array}\right]$ is $\left[\begin{array}{r}0.25 \\ -1.25\end{array}\right]$.
§2.9 Ex. 11. Row reduction shows that

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & -5 & 0 & -1 \\
2 & 5 & -8 & 4 & 3 \\
-3 & -9 & 9 & -7 & -2 \\
3 & 10 & -7 & 11 & 7
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 2 & -5 & 0 & -1 \\
0 & 1 & 2 & 4 & 5 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so the pivot columns of A are columns 1,2 , 4. In other words, the column vectors

$$
\left[\begin{array}{r}
1 \\
2 \\
-3 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
5 \\
-9 \\
10
\end{array}\right],\left[\begin{array}{r}
0 \\
4 \\
-7 \\
11
\end{array}\right]
$$

form a basis of $\operatorname{Col} A$. This implies that $\operatorname{dim} \operatorname{Col} A=3$ and $\operatorname{dim} \operatorname{Nul} A=$ $5-3=2$. To obtain a basis of $\operatorname{Nul} A$, perform further row reduction
to get

$$
A \sim U=\left[\begin{array}{rrrrr}
1 & 0 & -9 & 0 & 5 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

as the reduced row echelon form of A. We know that $\operatorname{Nul} A$ is the solution set of $A \mathbf{x}=\mathbf{0}$ which is the same as the solution set of $U \mathbf{x}=\mathbf{0}$. The standard parametric description of this solution set is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
9 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-5 \\
3 \\
0 \\
-2 \\
1
\end{array}\right]
$$

where x_{3} and x_{5} are the free variables. Thus we see that the vectors

$$
\left[\begin{array}{r}
9 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-5 \\
3 \\
0 \\
-2 \\
1
\end{array}\right]
$$

form a basis of $\operatorname{Nul} A$.
$\S 2.9$ Ex. 13. Let A be the matrix with the given vectors as its columns. By row reduction we have

$$
A=\left[\begin{array}{rrrr}
1 & -3 & 2 & -4 \\
-3 & 9 & -1 & 5 \\
2 & -6 & 4 & -3 \\
-4 & 12 & 2 & 7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 2 & -4 \\
0 & 0 & 5 & -7 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so columns 1, 3, 4 of A are the pivot columns of A. We conclude that these three columns of A are a basis of the subspace spanned by all the columns of A.
$\S 2.9$ Ex. 17. In general, for any $m \times n$ matrix A, the solution set of $A \mathbf{x}=\mathbf{0}$ is $\operatorname{Nul} A$, the null space of A, and its dimension is $n-\operatorname{rank}(A)$. In the case of a 7×6 matrix of rank 4 , the dimension of $\operatorname{Nul} A$ is $n-\operatorname{rank}(A)=6-4=2$.
$\S 2.9$ Ex. 21. (a) True. This is just the definition of $[\mathbf{x}]_{\mathcal{B}}$, the coordinate vector of x with respect to the basis \mathcal{B}.
(b) False. The 1-dimensional subspaces of \mathbb{R}^{n} are the lines in \mathbb{R}^{n} which pass through the origin.
(c) True. See Example 7 in $\S 2.8$ of the textbook.
(d) True. For any matrix A, the pivot columns of A form a basis for $\operatorname{Col} A$, and the non-pivot columns of A correspond to the free variables in the standard parametric description of $\operatorname{Nul} A$. See also Exercises 11 and 13 above, and Example 6 in $\S 2.8$, and Theorem 14 in $\S 2.9$.
(e) True. See Theorem 15 in $\S 2.9$.

