Solutions to graded exercises in Homework \#7
 Stephen G. Simpson
 February 27, 2011

Note: This assignment includes review exercises for the midterm exam.
$\S 2.3$ Ex. 7. Row reduction shows that the given 4×4 matrix has four pivot positions. Therefore, by Theorem 8, the matrix is invertible.
$\S 2.8$ Ex. 26. Row reduction shows that the pivot columns of A are

$$
\left[\begin{array}{r}
3 \\
-2 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
9 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
7 \\
3 \\
3
\end{array}\right]
$$

so these vectors form a basis of $\mathrm{Col} A$. Additional row reduction shows that the reduced row echelon form of A is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2.5 \\
0 & 1 & 2 & 0 & 1.5 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so the system $A \mathbf{x}=\mathbf{0}$ is equivalent to

$$
x_{1}+3 x_{3}+2.5 x_{5}=0
$$

with free variables x_{3} and x_{5}. Therefore, the general solution of $A \mathbf{x}=\mathbf{b}$ may be parametrized as

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-2.5 \\
-1.5 \\
0 \\
-1 \\
1
\end{array}\right]
$$

and the vectors $\left[\begin{array}{r}-3 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2.5 \\ -1.5 \\ 0 \\ -1 \\ 1\end{array}\right]$ form a basis of $\operatorname{Nul} A$.
§1.3 Ex. 14. Row reduction shows that the pivot columns of the augmented matrix $[A \mid \mathbf{b}]$ are just the columns of A. Since \mathbf{b} is not a pivot column, the system $A \mathbf{x}=\mathbf{b}$ is consistent. In other words, \mathbf{b} is a linear combination of the columns of A, i.e., \mathbf{b} belongs to $\operatorname{Col} A$.

Note: We can actually say more. Since all of the columns of A are pivot columns, $A \mathbf{x}=\mathbf{b}$ is consistent for any \mathbf{b}.
$\S 1.7$ Ex. 31. Since the third column of A is the sum of the first two columns, a nontrivial solution of $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right]$.
$\S 1.8$ Ex. 10. Row reduction shows that the reduced row echelon form of A is

$$
\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Thus the system $A \mathbf{x}=\mathbf{0}$ is equivalent to $x_{1}+3 x_{3}=x_{2}+2 x_{3}=x_{4}=0$ and the general solution may be parametrized as $\mathbf{x}=x_{3}\left[\begin{array}{r}-3 \\ -2 \\ 1 \\ 0\end{array}\right]$. Thus $\left[\begin{array}{r}-3 \\ -2 \\ 1 \\ 0\end{array}\right]$ is a basis of $\operatorname{Nul} A$.

