Solutions to graded exercises in Homework #7 Stephen G. Simpson February 27, 2011

Note: This assignment includes review exercises for the midterm exam.

- $\S2.3$ Ex. 7. Row reduction shows that the given 4×4 matrix has four pivot positions. Therefore, by Theorem 8, the matrix is invertible.
- $\S2.8$ Ex. 26. Row reduction shows that the pivot columns of A are

3		[-1]		[3]
-2		2		7
-5	,	9	,	3
$\begin{bmatrix} -2 \end{bmatrix}$		6		3

so these vectors form a basis of $\operatorname{Col} A$. Additional row reduction shows that the reduced row echelon form of A is

[1]	0	3	0	2.5
0	1	2	0	1.5
0	0	0	1	1
0	0	0	0	0

so the system $A\mathbf{x} = \mathbf{0}$ is equivalent to

with free variables x_3 and x_5 . Therefore, the general solution of $A\mathbf{x} = \mathbf{b}$ may be parametrized as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -2.5 \\ -1.5 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

and the vectors
$$\begin{bmatrix} -3\\ -2\\ 1\\ 0\\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -2.5\\ -1.5\\ 0\\ -1\\ 1 \end{bmatrix}$ form a basis of Nul A.

§1.3 Ex. 14. Row reduction shows that the pivot columns of the augmented matrix $[A \mid \mathbf{b}]$ are just the columns of A. Since \mathbf{b} is not a pivot column, the system $A\mathbf{x} = \mathbf{b}$ is consistent. In other words, \mathbf{b} is a linear combination of the columns of A, i.e., \mathbf{b} belongs to Col A.

Note: We can actually say more. Since all of the columns of A are pivot columns, $A\mathbf{x} = \mathbf{b}$ is consistent for any **b**.

- §1.7 Ex. 31. Since the third column of A is the sum of the first two columns, a nontrivial solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$.
- §1.8 Ex. 10. Row reduction shows that the reduced row echelon form of A is

$$\left[\begin{array}{rrrrr} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Thus the system $A\mathbf{x} = \mathbf{0}$ is equivalent to $x_1 + 3x_3 = x_2 + 2x_3 = x_4 = 0$ and the general solution may be parametrized as $\mathbf{x} = x_3 \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$. Thus

$$\begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$
 is a basis of Nul A.