Solutions to graded exercises in Homework \#6
 Stephen G. Simpson
 February 22, 2011

These exercises are from $\S \S 2.1,2.2$, and 2.3 of the textbook.
§2.1 Ex. 18. If the first two columns of B are equal, the first two columns of $A B$ are equal. The reason is that the i th entry of the first column of $A B$ is simply the dot product of the i th row of A with the first column of B. And similarly for the second column of $A B$, and all the other columns of $A B$.
$\S 2.1$ Ex. 22. Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$ be the columns of B. Then, the columns of $A B$ are $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$. If $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$ are linearly dependent, let \mathbf{x} be a nonzero vector in \mathbb{R}^{p} such that $x_{1} \mathbf{b}_{1}+\cdots+x_{p} \mathbf{b}_{p}=\mathbf{0}$. Then $x_{1} A \mathbf{b}_{1}+\cdots+$ $x_{p} A \mathbf{b}_{p}=A\left(x_{1} \mathbf{b}_{1}+\cdots+x_{p} \mathbf{b}_{p}\right)=A \mathbf{0}=\mathbf{0}$. Thus $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$ are again linearly dependent.
§2.2 Ex. 10. (a) False. The inverse of the product is the product of the inverses in reverse order.
(b) True. $\left(A^{-1}\right)^{-1}=A$.
(c) True. If $a d-b c=0$ then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not invertible.
(d) True. In fact, the row operations which reduce A to I also reduce I to A^{-1}.
(e) False. For example, let A be the 1×1 matrix [2]. The row operation which reduces A to $I_{1}=[1]$ reduces $A^{-1}=[0.5]$ to [0.25].
§2.2 Ex. 30. Let $A=\left[\begin{array}{rr}5 & 10 \\ 4 & 7\end{array}\right]$. To find A^{-1} we perform row reduction on the $\operatorname{matrix}[A \mid I]=\left[\begin{array}{rrrr}5 & 10 & 1 & 0 \\ 4 & 7 & 0 & 1\end{array}\right]$. The reduced echelon form of $[A \mid I]$ is $\left[I \mid A^{-1}\right]=\left[\begin{array}{rrrr}1 & 0 & -1.4 & 2 \\ 0 & 1 & 0.8 & -1\end{array}\right]$. Thus $A^{-1}=\left[\begin{array}{rr}-1.4 & 2 \\ 0.8 & -1\end{array}\right]$.
$\S 2.6$ Ex. 16. If a 5×5 matrix is invertible, its columns must span \mathbb{R}^{5}. The reason is item g in Theorem 8, which says that the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ given by the matrix is onto.

