Solutions to graded exercises in Homework \#5
 Stephen G. Simpson
 February 11, 2011

These exercises are from $\S \S 1.8$ and 1.9 of the textbook.
§1.8 Ex. 11. Applying row reduction to the augmented matrix $[A, \mathbf{b}]$, we see that the pivot columns are columns 1 and 2. In particular, the rightmost column is not a pivot column. Thus the system $A \mathbf{x}=\mathbf{b}$ is consistent, i.e., \mathbf{b} is in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.
§1.8 Ex. 22. (a) True.
(b) False. The range of $\mathbf{x} \mapsto A \mathbf{x}$ is the set of all linear combinations of the columns of A.
(c) False. The mentioned question is an existence question, not a uniqueness question.
(d) True. This is just the definition of a linear transformation.
(e) True.
$\S 1.9$ Ex. 18. The desired matrix is

$$
\left[\begin{array}{rr}
-3 & 2 \\
1 & -4 \\
0 & 0 \\
0 & 1
\end{array}\right] .
$$

$\S 1.9$ Ex. 22. Essentially we are being asked to solve the system $x_{1}-2 x_{2}=-1$, $-x_{1}+3 x_{2}=4,3 x_{1}-2 x_{2}=9$. The first two equations give $x_{2}=3$, and then the last equation gives $x_{1}=5$. Thus, the unique solution of $T\left(x_{1}, x_{2}\right)=(-1,4,9)$ is $(5,3)$.
$\S 1.9$ Ex. 32 . The correct statement is, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if and only if the standard matrix A has m pivot columns. The reason is that A is an $m \times n$ matrix, so having m pivot columns is the same as having a pivot position in every row. By Theorem 4 in $\S 1.4$ this is equivalent to the columns of A spanning \mathbb{R}^{m}, which by Theorem 12 in $\S 1.9$ is equivalent to T being onto \mathbb{R}^{m}.

