Solutions to graded exercises in Homework #5 Stephen G. Simpson February 11, 2011

These exercises are from \S 1.8 and 1.9 of the textbook.

- §1.8 Ex. 11. Applying row reduction to the augmented matrix $[A, \mathbf{b}]$, we see that the pivot columns are columns 1 and 2. In particular, the rightmost column is not a pivot column. Thus the system $A\mathbf{x} = \mathbf{b}$ is consistent, i.e., \mathbf{b} is in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.
- $\S1.8 \text{ Ex. } 22.$ (a) True.
 - (b) False. The range of $\mathbf{x} \mapsto A\mathbf{x}$ is the set of all linear combinations of the columns of A.
 - (c) False. The mentioned question is an *existence* question, not a uniqueness question.
 - (d) True. This is just the definition of a linear transformation.
 - (e) True.
- $\S1.9$ Ex. 18. The desired matrix is

$$\begin{bmatrix} -3 & 2\\ 1 & -4\\ 0 & 0\\ 0 & 1 \end{bmatrix}$$

- §1.9 Ex. 22. Essentially we are being asked to solve the system $x_1 2x_2 = -1$, $-x_1 + 3x_2 = 4$, $3x_1 - 2x_2 = 9$. The first two equations give $x_2 = 3$, and then the last equation gives $x_1 = 5$. Thus, the unique solution of $T(x_1, x_2) = (-1, 4, 9)$ is (5, 3).
- §1.9 Ex. 32. The correct statement is, $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if and only if the standard matrix A has m pivot columns. The reason is that A is an $m \times n$ matrix, so having m pivot columns is the same as having a pivot position in every row. By Theorem 4 in §1.4 this is equivalent to the columns of A spanning \mathbb{R}^m , which by Theorem 12 in §1.9 is equivalent to T being onto \mathbb{R}^m .