Solutions to graded exercises in Homework \#4
 Stephen G. Simpson
 February 7, 2011

These exercises are from $\S \S 1.5,1.7$, and 1.8 of the textbook.
$\S 1.5$ Ex. 30. Let A be a 3×3 matrix with two pivot positions.
(a) Yes, $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. This is because the system has a free variable, because A has a non-pivot column. (See the highlighted text on page 50.)
(b) No, $A \mathbf{x}=\mathbf{b}$ does not have a solution for all \mathbf{b}. This is because A has a non-pivot row. (See Theorem 4 on page 43.)
$\S 1.7$ Ex. 6. Let A be the given 4×3 matrix. Row reduction shows that all of the columns of A are pivot columns. Hence $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. (See the highlighted text on page 50.) In other words, the columns of A are linearly independent.
$\S 1.7$ Ex. 21. (a) False. A homogenous system always has the trivial solution.
(b) False. For instance, $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are linearly dependent, but the second vector is not a linear combination of the first.
(c) True. Any 5 vectors in \mathbb{R}^{4} are linearly dependent.
(d) True. If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly dependent, consider a dependence relation among them. The coefficient of \mathbf{z} must be nonzero, because otherwise \mathbf{x} and \mathbf{y} would be linearly dependent. We can then solve for \mathbf{z} to express \mathbf{z} as a linear combination of \mathbf{x} and \mathbf{y}. In other words, \mathbf{z} belongs to the span of \mathbf{x} and \mathbf{y}.
$\S 1.7$ Ex. 32. We have $1 \cdot($ column 1$)+2 \cdot($ column 2$)+(-1) \cdot($ column 3$)=\mathbf{0}$. In other words, the vector

$$
\mathbf{x}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
$$

is a nontrivial solution of $A \mathbf{x}=\mathbf{0}$.
$\S 1.8$ Ex. 4. The problem is to find a vector \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$. Applying row reduction to the augmented matrix $[A, \mathbf{b}]$, we get the reduced row echelon form

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -5 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

which gives

$$
\mathbf{x}=\left[\begin{array}{r}
-5 \\
-3 \\
1
\end{array}\right]
$$

as a solution of the nonhomogeneous system $A \mathbf{x}=\mathbf{b}$. Since every row of A is a pivot row, the homogeneous system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. From this it follows that our solution of the nonhomogeneous system is unique.

