Solutions to graded exercises in Homework #4 Stephen G. Simpson February 7, 2011

These exercises are from \S 1.5, 1.7, and 1.8 of the textbook.

§1.5 Ex. 30. Let A be a 3×3 matrix with two pivot positions.

- (a) Yes, $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution. This is because the system has a free variable, because A has a non-pivot column. (See the highlighted text on page 50.)
- (b) No, $A\mathbf{x} = \mathbf{b}$ does not have a solution for all \mathbf{b} . This is because A has a non-pivot row. (See Theorem 4 on page 43.)
- §1.7 Ex. 6. Let A be the given 4×3 matrix. Row reduction shows that all of the columns of A are pivot columns. Hence $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (See the highlighted text on page 50.) In other words, the columns of A are linearly independent.
- §1.7 Ex. 21. (a) False. A homogenous system *always* has the trivial solution.
 - (b) False. For instance, $\begin{bmatrix} 0\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ are linearly dependent, but the second vector is not a linear combination of the first.
 - (c) True. Any 5 vectors in \mathbb{R}^4 are linearly dependent.
 - (d) True. If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly dependent, consider a dependence relation among them. The coefficient of \mathbf{z} must be nonzero, because otherwise \mathbf{x} and \mathbf{y} would be linearly dependent. We can then solve for \mathbf{z} to express \mathbf{z} as a linear combination of \mathbf{x} and \mathbf{y} . In other words, \mathbf{z} belongs to the span of \mathbf{x} and \mathbf{y} .
- §1.7 Ex. 32. We have $1 \cdot (\text{column } 1) + 2 \cdot (\text{column } 2) + (-1) \cdot (\text{column } 3) = 0$. In other words, the vector

$$\mathbf{x} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$

is a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

§1.8 Ex. 4. The problem is to find a vector \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$. Applying row reduction to the augmented matrix $[A, \mathbf{b}]$, we get the reduced row echelon form

$$\begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} -5 \\ -3 \\ 1 \end{bmatrix}$$

which gives

as a solution of the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$. Since every row of A is a pivot row, the homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. From this it follows that our solution of the nonhomogeneous system is unique.