Solutions to graded exercises in Homework \#3
 Stephen G. Simpson
 January 25, 2011

These exercises are from $\S \S 1.3$ and 1.4 of the textbook.
§1.3 Ex. 24. (a) True.
(b) True. $\mathbf{v}+(\mathbf{u}-\mathbf{v})=\mathbf{u}$.
(c) False. The weights in a linear combination can be any scalars, including 0 .
(d) True.
(e) True.
$\S 1.3$ Ex. 26. (a) The augmented matrix $[A, \mathbf{b}]$ is

$$
\left[\begin{array}{rrrr}
2 & 0 & 6 & 10 \\
-1 & 8 & 5 & 3 \\
1 & -2 & 1 & 3
\end{array}\right]
$$

which easily reduces to a (non-unique) row echelon form, for instance

$$
\left[\begin{array}{rrrr}
2 & 0 & 6 & 10 \\
0 & 8 & 8 & 8 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In this way we see that the pivot columns are columns 1 and 2 . Since the rightmost column is not a pivot column, it follows that the system $A \mathbf{x}=\mathbf{b}$ has at least one solution. In other words, \mathbf{b} is a linear combination of the columns of A.
(b) Trivially the third column (or any column) of A is a linear combination of the columns of A. (This holds for any matrix.)
$\S 1.3$ Ex. 29. The center of mass is $(1.3, .9,0)$. The student must show the work to obtain this vector as a weighted average of the given vectors.
§1.4 Ex. 10. The vector equation is

$$
x_{1}\left[\begin{array}{l}
8 \\
5 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

and the matrix equation is

$$
\left[\begin{array}{rr}
8 & -1 \\
5 & 4 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] .
$$

$\S 1.4$ Ex. 17. The student should put A into row echelon form in order to find the pivot positions. After doing this, we see that the pivot positions are: row 1 column 1, row 2 column 2, and row 3 column 4 . Since row 4 does not contain a pivot position, it follows by Theorem 4 in $\S 1.4$ that the system $A \mathbf{x}=\mathbf{b}$ is not consistent for all \mathbf{b}.

