Solutions to graded exercises in Homework \#14
Stephen G. Simpson
April 26, 2011
These exercises are from $\S \S 6.5$ and 7.1 in the textbook.
§6.5 Ex. 4. We have

$$
A^{T} A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 3 \\
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rc}
3 & 3 \\
3 & 11
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
6 \\
14
\end{array}\right]
$$

The normal system associated to $A \mathbf{x}=\mathbf{b}$ is $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$, i.e.,

$$
\left[\begin{array}{cc}
3 & 3 \\
3 & 11
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
6 \\
14
\end{array}\right]
$$

The augmented matrix of the normal system is

$$
\left[\begin{array}{ccc}
3 & 3 & 6 \\
3 & 11 & 14
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

so the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$ is $\widehat{\mathbf{x}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
§6.5 Ex. 10. We have $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 4 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}3 \\ -1 \\ 5\end{array}\right]$. Since the columns of A are orthogonal, the projection of \mathbf{b} to $\operatorname{Col} A$ is given by the formula

$$
\widehat{\mathbf{b}}=\frac{\mathbf{a}_{1} \cdot \mathbf{b}}{\mathbf{a}_{1} \cdot \mathbf{a}_{1}} \mathbf{a}_{1}+\frac{\mathbf{a}_{2} \cdot \mathbf{b}}{\mathbf{a}_{2} \cdot \mathbf{a}_{2}} \mathbf{a}_{2}=\frac{9}{3}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]+\frac{12}{24}\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1 \\
4
\end{array}\right]
$$

The least-squares solutions of $A \mathbf{x}=\mathbf{b}$ are the solutions of $A \mathbf{x}=\widehat{\mathbf{b}}$, i.e.,

$$
\left[\begin{array}{rr}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1 \\
4
\end{array}\right]
$$

The augmented matrix of $A \mathbf{x}=\widehat{\mathbf{b}}$ is

$$
\left[\begin{array}{rrr}
1 & 2 & 4 \\
-1 & 4 & -1 \\
1 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$ is

$$
\widehat{\mathbf{x}}=\left[\begin{array}{l}
\widehat{x}_{1} \\
\widehat{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 / 2
\end{array}\right] .
$$

§7.1 Ex. 12. The given matrix

$$
U=\left[\begin{array}{rrrr}
.5 & .5 & -.5 & -.5 \\
-.5 & .5 & -.5 & .5 \\
.5 & .5 & .5 & .5 \\
-.5 & .5 & .5 & -.5
\end{array}\right]
$$

is easily seen to be orthogonal. (This means: the columns of U are orthogonal to each other, and the columns of U are unit vectors, and U is a square matrix.) Therefore, by Theorem 6 in $\S 6.2$ we have

$$
U^{-1}=U^{T}=\left[\begin{array}{rrrr}
.5 & -.5 & .5 & -.5 \\
.5 & .5 & .5 & .5 \\
-.5 & -.5 & .5 & .5 \\
-.5 & .5 & .5 & -.5
\end{array}\right]
$$

$\S 7.1$ Ex. 26. (a) True. See Theorem 2 in $\S 7.1$.
(b) True, because then $B^{T}=\left(P D P^{T}\right)^{T}=P^{T T} D^{T} P^{T}=P D P^{T}=B$.
(c) False. For example, the 2×2 matrix $\left[\begin{array}{rr}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ is orthogonal, but it is not symmetric, hence by Theorem 2 in $\S 7.1$ it is not orthogonally diagonalizable.
(d) True. See part b of Theorem 3 in $\S 7.1$.
$\S 7.1$ Ex. 34. The spectral decomposition of A is

$$
A=7 \mathbf{u}_{1} \mathbf{u}_{1}^{T}+7 \mathbf{u}_{2} \mathbf{u}_{2}^{T}-2 \mathbf{u}_{3} \mathbf{u}_{3}^{T}
$$

where

$$
\begin{aligned}
\mathbf{u}_{1} \mathbf{u}_{1}^{T} & =\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] \\
\mathbf{u}_{2} \mathbf{u}_{2}^{T} & =\frac{1}{18}\left[\begin{array}{rrr}
1 & -4 & -1 \\
-4 & 16 & 4 \\
-1 & 4 & 1
\end{array}\right] \\
\mathbf{u}_{3} \mathbf{u}_{3}^{T} & =\frac{1}{9}\left[\begin{array}{rrr}
4 & 2 & -4 \\
2 & 1 & -2 \\
-4 & -2 & 4
\end{array}\right] .
\end{aligned}
$$

