Solutions to graded exercises in Homework \#13
 Stephen G. Simpson
 April 12, 2011

These exercises are from $\S \S 6.2,6.3$, and 6.4 in the textbook.
$\S 6.2$ Ex. 20. The vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
0
\end{array}\right]
$$

are orthogonal, because

$$
\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\left(-\frac{2}{3}\right)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)+\left(\frac{2}{3}\right)(0)=0 .
$$

On the other hand, while \mathbf{v}_{1} is a unit vector, \mathbf{v}_{2} is not. To normalize, replace \mathbf{v}_{2} by the unit vector

$$
\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}}\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
0
\end{array}\right]=\frac{3}{\sqrt{5}}\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right] .
$$

$\S 6.2$ Ex. 24. (a) False. An orthogonal set is always a linearly independent set.
(b) False. For an orthonormal set, the vectors are required to be unit vectors.
(c) True. See Theorem 7(a) in $\S 6.2$.
(d) True. The formula for the orthogonal projection of \mathbf{y} onto \mathbf{v} is

$$
\frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}
$$

If we replace \mathbf{v} by $c \mathbf{v}$, the c 's cancel out (provided $c \neq 0$).
(e) True. By definition, an orthogonal matrix is a square matrix with orthonormal columns. Since the columns are orthogonal, they are linearly independent, hence the matrix is invertible.
$\S 6.3$ Ex. 8. Let W be the subspace spanned by \mathbf{u}_{1} and \mathbf{u}_{2}. We have

$$
\mathbf{u}_{1} \cdot \mathbf{u}_{2}=(1)(-1)+(1)(3)+(1)(-2)=0
$$

so \mathbf{u}_{1} is orthogonal to \mathbf{u}_{2}. Thus the orthogonal projection of \mathbf{y} to W is

$$
\begin{aligned}
\mathbf{y}_{W} & =\operatorname{proj}_{W}(\mathbf{y})=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} \\
& =\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{7}{14}\left[\begin{array}{r}
-1 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
7 / 2 \\
1
\end{array}\right] .
\end{aligned}
$$

Letting

$$
\mathbf{z}=\mathbf{y}-\mathbf{y}_{W}=\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right]-\left[\begin{array}{c}
3 / 2 \\
7 / 2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
1 / 2 \\
2
\end{array}\right]
$$

we have $\mathbf{y}=\mathbf{y}_{W}+\mathbf{z}$ where \mathbf{y}_{W} is in W and \mathbf{z} is orthogonal to W.
$\S 6.3$ Ex. 16 . Let W be the subspace spanned by \mathbf{v}_{1} and \mathbf{v}_{2}. Since \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal, the orthogonal projection of \mathbf{y} to W is
$\mathbf{y}_{W}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\frac{30}{10}\left[\begin{array}{r}1 \\ -2 \\ -1 \\ 2\end{array}\right]+\frac{26}{26}\left[\begin{array}{r}-4 \\ 1 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{r}-1 \\ -5 \\ -3 \\ 9\end{array}\right]$.
Letting

$$
\mathbf{z}=\mathbf{y}-\mathbf{y}_{W}=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right]-\left[\begin{array}{r}
-1 \\
-5 \\
-3 \\
9
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
4 \\
4
\end{array}\right]
$$

we see that the distance from \mathbf{y} to W is

$$
\left\|\mathbf{y}-\mathbf{y}_{W}\right\|=\|\mathbf{z}\|=\sqrt{4^{2}+4^{2}+4^{2}+4^{2}}=8
$$

§6.4 Ex. 10. The given column vectors are

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{r}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{r}
6 \\
3 \\
6 \\
-3
\end{array}\right]
$$

The Gram-Schmidt process gives

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]
$$

and

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{r}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{-36}{12}\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
1 \\
-1
\end{array}\right]
$$

and finally

$$
\begin{gathered}
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
=\left[\begin{array}{r}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{6}{12}\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{r}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-1 \\
3 \\
-1
\end{array}\right] .
\end{gathered}
$$

Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthogonal basis for the 3-dimensional subspace of \mathbb{R}^{4} spanned by $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$.

