Solutions to graded exercises in Homework \#12
 Stephen G. Simpson
 April 5, 2011

These exercises are from $\S \S 5.3,6.1$, and 6.2 in the textbook.
§5.3 Ex. 8. The matrix $A=\left[\begin{array}{ll}5 & 1 \\ 0 & 5\end{array}\right]$ is triangular, so the eigenvalues are the diagonal entries 5,5 . We then have $A-5 I=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ which is of rank 1 , which means that the dimension of the eigenspace is $2-1=1$. Thus A is not diagonalizable.
§5.3 Ex. 20. The matrix $A=\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right]$ is triangular, so the eigenvalues are the diagonal entries $4,4,2,2$. For the eigenvalue 4 we have

$$
A-4 I=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 \\
1 & 0 & 0 & -2
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the general solution of $A \mathbf{x}=4 \mathbf{x}$ is

$$
\mathbf{x}=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]
$$

and there are two linearly independent eigenvectors. For the eigenvalue 2 we have

$$
A-2 I=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the general solution of $A \mathrm{x}=2 \mathrm{x}$ is

$$
\mathbf{x}=x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

and again there are two linearly independent eigenvectors. Thus A is diagonalizable and an explicit diagonalization is $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], \quad D=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

§6.1 Ex. 6. We have

$$
\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}=\frac{(6)(3)+(-2)(-1)+(3)(-5)}{(6)(6)+(-2)(-2)+(3)(3)}\left[\begin{array}{r}
6 \\
-2 \\
3
\end{array}\right]=\frac{5}{49}\left[\begin{array}{r}
6 \\
-2 \\
3
\end{array}\right]=\left[\begin{array}{r}
30 / 49 \\
-10 / 49 \\
15 / 49
\end{array}\right]
$$

$\S 6.1$ Ex. 20. (a) True, because $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.
(b) False, because c could be negative.
(c) True, by definition of W^{\perp}.
(d) True, by Theorem 2 in $\S 6.1$.
(e) True, because the each entry of $A \mathbf{x}$ is the inner product of \mathbf{x} with a row of A.
$\S 6.2$ Ex. 10. We have

$$
\begin{aligned}
& \mathbf{u}_{1} \cdot \mathbf{u}_{2}=(3)(2)+(-3)(2)+(0)(-1)=0 \\
& \mathbf{u}_{1} \cdot \mathbf{u}_{3}=(3)(1)+(-3)(1)+(0)(4)=0 \\
& \mathbf{u}_{2} \cdot \mathbf{u}_{3}=(2)(1)+(2)(1)+(-1)(4)=0
\end{aligned}
$$

so $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ form an orthogonal basis for \mathbb{R}^{3}. Therefore, $\mathbf{x}=\left[\begin{array}{r}5 \\ -3 \\ 1\end{array}\right]$ can be expressed as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ by writing

$$
\mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{x} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}=\frac{24}{18} \mathbf{u}_{1}+\frac{3}{9} \mathbf{u}_{2}+\frac{6}{18} \mathbf{u}_{3}=\frac{4}{3} \mathbf{u}_{1}+\frac{1}{3} \mathbf{u}_{2}+\frac{1}{3} \mathbf{u}_{3} .
$$

