Solutions to graded exercises in Homework \#10
 Stephen G. Simpson
 March 21, 2011

These exercises are from $\S 5.1$ in the textbook.
§5.1 Ex. 4. We have

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{c}
-1+\sqrt{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
-1+2 \sqrt{2} \\
3+\sqrt{2}
\end{array}\right]=(3+\sqrt{2})\left[\begin{array}{c}
-1+\sqrt{2} \\
1
\end{array}\right]
$$

which means that $\left[\begin{array}{c}-1+\sqrt{2} \\ 1\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$ and the corresponding eigenvalue is $3+\sqrt{2}$.
§5.1 Ex. 8. Let A be the given matrix. By row reduction we have

$$
A-3 I=\left[\begin{array}{rrr}
-2 & 2 & 2 \\
3 & -5 & 1 \\
0 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

so the general solution of $A \mathrm{x}=3 \mathrm{x}$ is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Thus $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue 3.
§5.1 Ex. 14. By row reduction we have

$$
A+2 I=\left[\begin{array}{rrr}
3 & 0 & -1 \\
1 & -1 & 0 \\
4 & -13 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & -1 / 3 \\
0 & 0 & 0
\end{array}\right]
$$

so the general solution of $A \mathrm{x}=-2 \mathrm{x}$ is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
1
\end{array}\right] .
$$

Thus either of the vectors $\left[\begin{array}{c}1 / 3 \\ 1 / 3 \\ 1\end{array}\right]$ or $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$ is by itself a basis of the eigenspace of A corresponding to the eigenvalue -2 .
$\S 5.1$ Ex. 16. By row reduction we have

$$
A-4 I=\left[\begin{array}{rrrr}
-1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the general solution of $A \mathbf{x}=4 \mathbf{x}$ is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Thus the vectors $\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$ are a basis of the eigenspace of A corresponding to the eigenvalue 4 .
$\S 5.1$ Ex. 32. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rotation about a line through the origin. Then 1 is an eigenvalue of T, and the corresponding eigenspace consists of all vectors in \mathbb{R}^{3} which are parallel to the given line.

