\qquad
\qquad
\qquad

VERSION A \qquad

On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result in a loss of 5 points on the exam.

On your scantron, bubble letters corresponding to your answers on indicated questions. It is a good idea for future review to circle your answers in the test booklet.

Check that your exam contains 20 multiple-choice questions, numbered sequentially.
Answer Questions 1-20 on your scantron.
Each question is worth 5 points.

> THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

[^0]1. Solve the linear system

$$
\begin{array}{llr}
2 x_{1}-x_{2}+3 x_{3} & = & -5 \\
3 x_{1}+2 x_{2}-6 x_{3} & = & 3 \\
-x_{1}+x_{2} & = & 6
\end{array}
$$

а) $\left(-\frac{53}{3},-\frac{35}{3},-\frac{56}{9}\right)$
b) $\left(1,5, \frac{2}{3}\right)$
c) $\left(-11,-5, \frac{2}{3}\right)$
\star d) $\left(-1,5, \frac{2}{3}\right)$
2. How many solutions does the following system have?

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+4 x_{3}=-1 \\
& 2 x_{1}-2 x_{2}+x_{3}=0 \\
& 7 x_{1}+x_{2}+6 x_{3}=2
\end{aligned}
$$

\star a) None
b) One
c) Infinitely many, with 1 free variable
d) Infinitely many, with 2 free variables
3. According to the graph

how can we best describe the vector \mathbf{w} in terms of the vectors \mathbf{u} and \mathbf{v} ?
a) $2 \mathbf{v}+\mathbf{u}$
b) $3 \mathbf{v}-\mathbf{u}$

夫c) $3 \mathbf{v}+\mathbf{u}$
d) $2 \mathbf{v}-\mathbf{u}$
4. For which value(s) of h is $\mathbf{b}=\left[\begin{array}{l}0 \\ h\end{array}\right]$ in the set spanned by the vectors $\mathbf{a}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{a}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ?$
a) $h=0$
b) $h=1$
c) $h=2$
\star d) $h=$ any real number.
5. Which of the following is a linearly independent set?
*a) $\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]$
b) $\left[\begin{array}{l}4 \\ 2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ 1 \\ 1.5 \\ 0\end{array}\right]$
c) $\mathbf{v}, 2 \mathbf{v}+\mathbf{u}, \mathbf{0}$
d) $\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 7\end{array}\right]$
6. What is the standard matrix for rotation of the $x y$-plane about the origin by 180° ?
a) $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
b) $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
*c) $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$
d) $\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right]$
7. Which of the following matrices is invertible?
a) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
*c) $\left[\begin{array}{rrr}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10\end{array}\right]$
d) $\left[\begin{array}{lll}2 & 0 & 1 \\ 3 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
8. Find a basis of the column space $\operatorname{Col} A$ for the matrix

$$
A=\left[\begin{array}{ccccc}
2 & 3 & -2 & 1 & 4 \\
4 & 5 & -3 & 11 & 4 \\
4 & 6 & -4 & 3 & 4
\end{array}\right]
$$

a) $\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}-2 \\ -3 \\ -4\end{array}\right]$
$\star \mathrm{b})\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{c}1 \\ 11 \\ 3\end{array}\right]$
c) $\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}-2 \\ -3 \\ -4\end{array}\right],\left[\begin{array}{c}1 \\ 11 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]$
d) $\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 6\end{array}\right]$
9. The following are augmented matrices of corresponding linear systems. Which system is consistent when $\mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]^{T}$ is any vector in \mathbb{R}^{3} ?
a) $\left[\begin{array}{llll}1 & 2 & 3 & b_{1} \\ 4 & 5 & 6 & b_{2} \\ 7 & 8 & 9 & b_{3}\end{array}\right]$
b) $\left[\begin{array}{rrrr}1 & 2 & 3 & b_{1} \\ 4 & 5 & 6 & b_{2} \\ 6 & 8 & 10 & b_{3}\end{array}\right]$
c) $\left[\begin{array}{rrrr}0 & 1 & -4 & b_{1} \\ 2 & -3 & 2 & b_{2} \\ 4 & -5 & 0 & b_{3}\end{array}\right]$
$\star \mathrm{d})\left[\begin{array}{rrrr}1 & 3 & 4 & b_{1} \\ -4 & 2 & 6 & b_{2} \\ -3 & -2 & -7 & b_{3}\end{array}\right]$
10. Which of the following multiplications will give you a vector in \mathbb{R}^{4} ?
a) $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
b) $\left[\begin{array}{lllc}a & b & c & d \\ e & f & g & h \\ i & j & k & l\end{array}\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]$

* c) $\left[\begin{array}{rr}1 & 2 \\ 4 & 5 \\ 6 & 8 \\ 9 & 12\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
d) $\left[\begin{array}{rrrr}0 & 1 & -4 & 3 \\ 2 & -3 & 2 & 1\end{array}\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]$

11. Which of the following is not a linear transformation?
a) $T(x)=3 x$
b) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
c) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}+x_{2}$

夫d) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x y$
12. Find the entries in the second row of $A B$ where $A=\left[\begin{array}{rrr}2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & -6 \\ 7 & 1 \\ 3 & 2\end{array}\right]$.
*a) $[5,1]$
b) $[5,-1]$
c) $[2,3]$
d) $[2,-3]$
13. Which of following matrices is in reduced echelon form?
a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
*d) $\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
14. Find the parametric vector form of the solution set of the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\begin{array}{rrrrr}1 & -1 & 0 & 3 & 3 \\ 0 & 0 & 1 & -5 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
a) $\mathbf{x}=x_{1}\left[\begin{array}{r}-1 \\ 0 \\ 4 \\ 3 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 2 \\ 5\end{array}\right]$
$\star \mathrm{b}) \mathbf{x}=x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-3 \\ 0 \\ 5 \\ 1 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{r}-3 \\ 0 \\ 3 \\ 0 \\ 1\end{array}\right]$
c) $\mathbf{x}=x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 0 \\ 1\end{array}\right]$
d) $\mathbf{x}=x_{2}\left[\begin{array}{r}-3 \\ 0 \\ 5 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 3\end{array}\right]$
15. Consider the matrix $A=\left[\begin{array}{rrr}1 & 4 & 7 \\ 2 & 5 & 8 \\ -3 & -9 & -15\end{array}\right]$. Which of the following vectors belong to the null space of A ?
a) All vectors in \mathbb{R}^{3}.
\star b) All vectors \mathbf{v} in \mathbb{R}^{3} such that $v_{1}=v_{3}=-\frac{v_{2}}{2}$.
c) $\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$.
d) The zero vector only.
16. Suppose A is an $m \times n$ matrix and all of its columns are pivot columns. Then, which of the following statements is not necessarily true?
a) The equation $A \mathbf{x}=\mathbf{b}$ has either a unique solution or none at all, for each vector \mathbf{b} in \mathbb{R}^{m}.
$\star \mathrm{b})$ The equation $A \mathbf{x}=\mathbf{b}$ is consistent for any vector \mathbf{b} in \mathbb{R}^{m}.
c) The set of column vectors of A is a linearly independent set.
d) The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
17. Let T be a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}1 \\ -1\end{array}\right]$. Find $T\left(\left[\begin{array}{l}4 \\ 5\end{array}\right]\right)$.
a) $\left[\begin{array}{l}3 \\ 9\end{array}\right]$
b) $\left[\begin{array}{r}11 \\ 9\end{array}\right]$
c) $\left[\begin{array}{r}-6 \\ 5\end{array}\right]$
*d) $\left[\begin{array}{r}9 \\ 11\end{array}\right]$
18. If $\left(A^{-1}\right)^{T}=\left[\begin{array}{rr}1 & -2 \\ 3 & 4\end{array}\right]$, what is A ?
a) $\left[\begin{array}{rr}2 & -0.3 \\ -0.2 & 0.1\end{array}\right]$
b) $\left[\begin{array}{rr}2 & -3 \\ 1 & 1\end{array}\right]$

* c) $\left[\begin{array}{rr}0.4 & -0.3 \\ 0.2 & 0.1\end{array}\right]$
d) $\left[\begin{array}{rr}4 & -3 \\ 2 & 1\end{array}\right]$

19. Let $A=\left[\begin{array}{rr}2 & 5 \\ -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & -5 \\ 3 & k\end{array}\right]$. What value(s) of k, if any, will make $A B=B A$?
a) 4
*b) 5
c) 6
d) Any real number
20. Suppose T is the linear transformation given by $T\left(\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}-5 x_{1}+9 x_{2} \\ 4 x_{1}-7 x_{2}\end{array}\right]$. Is T one-to-one? Is T onto? Can you find T^{-1} ?
a) T is one-to-one but not onto.
b) T is onto but not one-to-one.
c) T is one-to-one and onto, and $T^{-1}\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}-7 x_{1}-9 x_{2} \\ -4 x_{1}-5 x_{2}\end{array}\right]$.
\star d) T is one-to-one and onto, and $T^{-1}\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}7 x_{1}+9 x_{2} \\ 4 x_{1}+5 x_{2}\end{array}\right]$.

[^0]: THE USE OF NOTES OF ANY KIND IS NOT PERMITTED DURING THIS EXAMINATION.

