MATH 220	NAME
EXAM 2	STUDENT NUMBER
SPRING 2011	INSTRUCTOR
VERSION A	SECTION NUMBER

On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result in a loss of 5 points on the exam.

On your scantron, bubble letters corresponding to your answers on indicated questions. It is a good idea for future review to circle your answers in the test booklet.

Check that your exam contains 30 multiple-choice questions, numbered sequentially.

Answer Questions 1–30 on your scantron.

Each question is worth 5 points.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

THE USE OF NOTES OF ANY KIND IS NOT PERMITTED DURING THIS EXAMINATION.

1. Determine h and k such that the solution set of the following system is empty.

$$x_1 + 3x_2 = k$$
$$4x_1 + hx_2 = 8$$

*a) $h = 12, k \neq 2$ b) h = 12, k = 2c) $h \neq 12, k \neq 2$ d) $h \neq 12, k \neq 2$

2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3\\1\\8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h\\-5\\-3 \end{bmatrix}$. For what value(s) of h is \mathbf{y} in
Span $\{\mathbf{v}_1, \mathbf{v}_2\}$?
a) $h = \frac{3}{2}$
b) $h = \frac{1}{4}$
 $\star c) h = -\frac{7}{2}$

d) All real numbers

3. Suppose
$$AB = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$. Find A .
a) $A = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$
b) $A = \begin{bmatrix} 11 & -17 \\ -27 & 41 \end{bmatrix}$
c) $A = \begin{bmatrix} 13 & 43 \\ 4 & 18 \end{bmatrix}$
 $\star d) A = \begin{bmatrix} -3 & 13 \\ -8 & 27 \end{bmatrix}$

4. If det
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 8$$
, what is det $\begin{bmatrix} a & b & c \\ 3g + a & 3h + b & 3i + c \\ d & e & f \end{bmatrix}$?
a) 8
*b) -24
c) 24
d) -8

5. Find the determinant of

9	1	9	9	9	1
9	0	9	9	2	
4	0	0	5	0	.
9	0	$\ddot{3}$	9	0	
6	0	0	7	0	

- a) 0
- b) -2
- ★c) -12
- d) 12
- 6. Let A be an invertible $n \times n$ matrix. Which of the following statements is not necessarily true?
 - a) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
 - b) A^T is invertible.
 - c) Col $A = \mathbb{R}^n$.
 - \star d) The number 0 is an eigenvalue of A.

7. Let $A = \begin{bmatrix} 6 & 1 \\ 3 & 4 \end{bmatrix}$. Which of the following matrices is similar to A? *a) $\begin{bmatrix} 7 & 0 \\ 0 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$

d) None of the above.

8. Which of the following is a unit vector in the same direction as $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$?

a)
$$\begin{bmatrix} -\sqrt{6} \\ \sqrt{6}/3 \\ \sqrt{6} \end{bmatrix}$$

*b)
$$\begin{bmatrix} -\sqrt{6}/6 \\ \sqrt{6}/3 \\ \sqrt{6}/6 \end{bmatrix}$$

c)
$$\begin{bmatrix} -1/6 \\ 1/3 \\ 1/6 \end{bmatrix}$$

d) **v** is already a unit vector.

- 9. Which of the following statements is always true?
 - a) An $n \times n$ symmetric matrix has n distinct real eigenvalues.
 - b) An orthogonal matrix is orthogonally diagonalizable.
 - c) If P is an $n \times n$ matrix with orthogonal columns, then $P^T = P^{-1}$.
 - *d) Every symmetric matrix is orthogonally diagonalizable.

10. Find the matrix of the quadratic form $8x_1^2 + 7x_2^2 - 3x_3^2 - 6x_1x_2 + 4x_1x_3 - 2x_2x_3$.

$$\begin{array}{c} \star a) \begin{bmatrix} 8 & -3 & 2 \\ -3 & 7 & -1 \\ 2 & -1 & -3 \end{bmatrix} \\ b) \begin{bmatrix} 8 & -6 & 4 \\ 0 & 7 & -2 \\ 0 & 0 & -3 \end{bmatrix} \\ c) \begin{bmatrix} -3 & 4 & 7/2 \\ 4 & 2 & -3/2 \\ 7/2 & -3/2 & -1 \\ d) \begin{bmatrix} 8 & 2 & -3 \\ 2 & 7 & -1 \\ -3 & -1 & -3 \end{bmatrix}$$

- 11. Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (0,1), (1,1), (2,2), (3,2).
 - *a) y = .9 + .4x
 - b) y = 4.5 + 9.5x
 - c) y = .4 + .9x
 - d) y = 9.5 4.5x

12. Find the characteristic polynomial of the following matrix:

$$A = \left[\begin{array}{rrr} -2 & 0 & 3 \\ 1 & 5 & -1 \\ 2 & 0 & 4 \end{array} \right].$$

a) $(-2 - \lambda)(5 - \lambda)(4 - \lambda)$ *b) $(5 - \lambda)(\lambda^2 - 2\lambda - 14)$ c) $\lambda^3 + 5\lambda^2 + 6\lambda - 14$ d) $5(\lambda^2 - 2\lambda - 14)$

13. For what value of h are the vectors

$$\begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4\\0 \end{bmatrix}, \begin{bmatrix} h\\5\\6 \end{bmatrix}$$
 linearly independent?

- a) $h \neq 12$
- \star b) $h \neq -12$
 - c) h = -12
- d) h = -10

14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 3\\7 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\5 \end{bmatrix}$. What is $T^{-1}\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right)$? a) $\begin{bmatrix} 8\\10 \end{bmatrix}$ b) $\begin{bmatrix} -8\\10 \end{bmatrix}$ $\star c) \begin{bmatrix} 1\\-1 \end{bmatrix}$ d) $\begin{bmatrix} 2\\-4 \end{bmatrix}$

15. If
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, find the second column of A^{-1} .
a) $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
 \star b) $\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
c) $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$
d) $\frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$

16. Find the coordinate vector of **x** relative to the basis $\{\mathbf{v_1}, \mathbf{v_2}\}$

where
$$\mathbf{x} = \begin{bmatrix} -3 \\ 0 \\ 5 \end{bmatrix}$$
, $\mathbf{v_1} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -5 \\ -2 \\ 4 \end{bmatrix}$.
* a) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
b) $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$
c) $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$
d) $\begin{bmatrix} -3 \\ -2 \end{bmatrix}$

- 17. What is the rank of a 3×6 matrix whose null space is 4-dimensional?
 - a) 1
 - *b) 2
 - c) 3
 - d) 4

18. Find the eigenvalues of $\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.

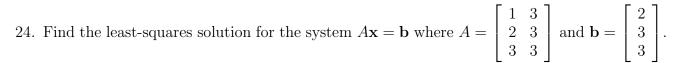
- a) 1, 1, 2
- b) 1, 2, 2
- c) 1, -1, 2
- \star d) 1, 2, 3
- 19. Given the diagonalized matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$, compute A^{10} .
 - a) $\frac{1}{2} \begin{bmatrix} 3^{10} 1 & 3^{10} + 1 \\ 3^{10} + 1 & 3^{10} 1 \end{bmatrix}$ b) $\frac{1}{2} \begin{bmatrix} 3^{10} - 1 & 3^{10} - 1 \\ 3^{10} - 1 & 3^{10} + 1 \end{bmatrix}$ $\star c) \frac{1}{2} \begin{bmatrix} 3^{10} + 1 & 3^{10} - 1 \\ 3^{10} - 1 & 3^{10} + 1 \end{bmatrix}$ d) $\frac{1}{2} \begin{bmatrix} 3^{10} + 1 & 3^{10} + 1 \\ 3^{10} + 1 & 3^{10} - 1 \end{bmatrix}$

20. What is the distance between $\mathbf{u} = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}$?

- a) 3
- b) $\sqrt{10}$
- c) $\sqrt{12}$
- \star d) $\sqrt{11}$

21. Find the orthogonal projection of \mathbf{x} onto $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{x} = \begin{bmatrix} -1\\4\\3 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$. $\star a$) $\begin{bmatrix} -1\\4\\0 \end{bmatrix}$ b) $\begin{bmatrix} 3\\1\\0 \end{bmatrix}$ c) $\begin{bmatrix} 0\\-1\\2 \end{bmatrix}$ d) $\begin{bmatrix} -2\\2\\1 \end{bmatrix}$

- 22. If A is an $n \times n$ square matrix, and I denotes the $n \times n$ identity matrix, which of the following statements is not necessarily true?
 - \star a) If the columns of A form an orthogonal set, then A is an orthogonal matrix.
 - b) If $AA^T = I$, then A is an orthogonal matrix.
 - c) If A is an orthogonal matrix, its determinant must be ± 1 .
 - d) If A is an orthogonal matrix, the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths and orthogonality.
- 23. Which of the following statements is not true?
 - a) An $n \times n$ matrix that is orthogonally diagonalizable must be symmetric.
 - b) For any matrix A, $A^T A$ is symmetric.
 - c) If A is symmetric, any two eigenvectors of A corresponding to different eigenvalues must be orthogonal.
 - \star d) If A and B are symmetric matrices, AB must also be symmetric.



25. Let $\mathbf{v}_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} x\\ y\\ z \end{bmatrix}$. Which of the following correctly express \mathbf{v} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 ?

a)
$$\mathbf{v} = \frac{x+y+z}{2}\mathbf{v}_1 + \frac{x-y}{3}\mathbf{v}_2 + \frac{x+y-z}{5}\mathbf{v}_3$$

b) $\mathbf{v} = \frac{x+y+z}{7}\mathbf{v}_1 + \frac{x+y-2z}{4}\mathbf{v}_2 + \frac{x-y}{2}\mathbf{v}_3$
 $\star c) \mathbf{v} = \frac{x+y+z}{3}\mathbf{v}_1 + \frac{x-y}{2}\mathbf{v}_2 + \frac{x+y-2z}{6}\mathbf{v}_3$
d) $\mathbf{v} = \frac{x-y-z}{3}\mathbf{v}_1 + \frac{x-y}{7}\mathbf{v}_2 + \frac{x-y+2z}{6}\mathbf{v}_3$

26. Let
$$W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
 where $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2\\0\\6\\0 \end{bmatrix}$. Which of the following vectors belong to the orthogonal complement of W^2 .

belong to the orthogonal complement of W?

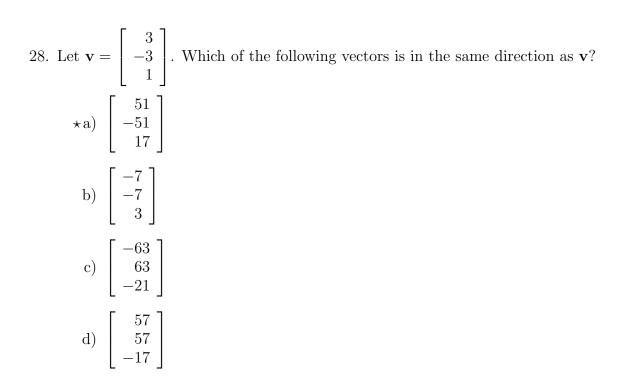
$$\star a) \begin{bmatrix} 0\\8\\0\\9 \end{bmatrix} and \begin{bmatrix} 0\\2\\0\\17 \end{bmatrix}$$

$$b) \begin{bmatrix} 1\\12\\0\\0 \end{bmatrix} and \begin{bmatrix} 2\\17\\0\\-1 \end{bmatrix}$$

$$c) \begin{bmatrix} 2\\4\\11\\0 \end{bmatrix} and \begin{bmatrix} 2\\2\\2\\-8 \end{bmatrix}$$

$$d) \begin{bmatrix} 1\\0\\12\\0 \end{bmatrix} and \begin{bmatrix} 12\\0\\-6\\0 \end{bmatrix}$$

- 27. Find a basis of the column space ColA for the matrix $A = \begin{bmatrix} 4 & 5 & -11 & 2 & 5 \\ 4 & 5 & -3 & 11 & 7 \\ 4 & 6 & -4 & 3 & 1 \end{bmatrix}$.
 - a) The first and second columns
 - b) The first and last columns
 - $\star\,\mathrm{c})\,$ The first, second and third columns
 - d) The fourth and fifth columns



29. Let $\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. What is the distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{v} ? a) 1 b) $\sqrt{2}$ $\star c$) $\sqrt{3}$ d) 2

30. The vectors $\begin{bmatrix} 0\\4\\2 \end{bmatrix}$ and $\begin{bmatrix} 5\\6\\-7 \end{bmatrix}$ form a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

a)	$\begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix}$
∗b)	$\begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\4\\-8 \end{bmatrix}$
c)	$\begin{bmatrix} 0\\3\\1 \end{bmatrix}, \begin{bmatrix} 5\\6\\-7 \end{bmatrix}$
d)	$\begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\6\\-7 \end{bmatrix}$