\qquad
\qquad
\qquad

VERSION A \qquad

On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result in a loss of 5 points on the exam.

On your scantron, bubble letters corresponding to your answers on indicated questions. It is a good idea for future review to circle your answers in the test booklet.

Check that your exam contains 30 multiple-choice questions, numbered sequentially.
Answer Questions 1-30 on your scantron.
Each question is worth 5 points.

> THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

[^0]1. Determine h and k such that the solution set of the following system is empty.

$$
\begin{gathered}
x_{1}+3 x_{2}=k \\
4 x_{1}+h x_{2}=8
\end{gathered}
$$

*a) $h=12, k \neq 2$
b) $h=12, k=2$
c) $h \neq 12, k \neq 2$
d) $h \neq 12, k=2$
2. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 1 \\ 8\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{r}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is \mathbf{y} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?
a) $h=\frac{3}{2}$
b) $h=\frac{1}{4}$
*c) $h=-\frac{7}{2}$
d) All real numbers
3. Suppose $A B=\left[\begin{array}{rr}5 & 4 \\ -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right]$. Find A.
a) $A=\left[\begin{array}{rr}1 & -3 \\ -2 & 7\end{array}\right]$
b) $A=\left[\begin{array}{rr}11 & -17 \\ -27 & 41\end{array}\right]$
c) $A=\left[\begin{array}{rr}13 & 43 \\ 4 & 18\end{array}\right]$

夫d) $A=\left[\begin{array}{ll}-3 & 13 \\ -8 & 27\end{array}\right]$
4. If $\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=8$, what is $\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ 3 g+a & 3 h+b & 3 i+c \\ d & e & f\end{array}\right]$?
a) 8
*b) -24
c) 24
d) -8
5. Find the determinant of

$$
\left[\begin{array}{lllll}
9 & 1 & 9 & 9 & 9 \\
9 & 0 & 9 & 9 & 2 \\
4 & 0 & 0 & 5 & 0 \\
9 & 0 & 3 & 9 & 0 \\
6 & 0 & 0 & 7 & 0
\end{array}\right] .
$$

a) 0
b) -2

夫c) -12
d) 12
6. Let A be an invertible $n \times n$ matrix. Which of the following statements is not necessarily true?
a) The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
b) A^{T} is invertible.
c) $\operatorname{Col} A=\mathbb{R}^{n}$.
$\star \mathrm{d})$ The number 0 is an eigenvalue of A.
7. Let $A=\left[\begin{array}{ll}6 & 1 \\ 3 & 4\end{array}\right]$. Which of the following matrices is similar to A ?
*a) $\left[\begin{array}{ll}7 & 0 \\ 0 & 3\end{array}\right]$
b) $\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$
d) None of the above.
8. Which of the following is a unit vector in the same direction as $\mathbf{v}=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$?
a) $\left[\begin{array}{c}-\sqrt{6} \\ \sqrt{6} / 3 \\ \sqrt{6}\end{array}\right]$
*b) $\left[\begin{array}{r}-\sqrt{6} / 6 \\ \sqrt{6} / 3 \\ \sqrt{6} / 6\end{array}\right]$
c) $\left[\begin{array}{r}-1 / 6 \\ 1 / 3 \\ 1 / 6\end{array}\right]$
d) \mathbf{v} is already a unit vector.
9. Which of the following statements is always true?
a) An $n \times n$ symmetric matrix has n distinct real eigenvalues.
b) An orthogonal matrix is orthogonally diagonalizable.
c) If P is an $n \times n$ matrix with orthogonal columns, then $P^{T}=P^{-1}$.
$\star d)$ Every symmetric matrix is orthogonally diagonalizable.
10. Find the matrix of the quadratic form $8 x_{1}^{2}+7 x_{2}^{2}-3 x_{3}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{3}$.
$\star \mathrm{a})\left[\begin{array}{rrr}8 & -3 & 2 \\ -3 & 7 & -1 \\ 2 & -1 & -3\end{array}\right]$
b) $\left[\begin{array}{rrr}8 & -6 & 4 \\ 0 & 7 & -2 \\ 0 & 0 & -3\end{array}\right]$
c) $\left[\begin{array}{rrr}-3 & 4 & 7 / 2 \\ 4 & 2 & -3 / 2 \\ 7 / 2 & -3 / 2 & -1\end{array}\right]$
d) $\left[\begin{array}{rrr}8 & 2 & -3 \\ 2 & 7 & -1 \\ -3 & -1 & -3\end{array}\right]$
11. Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(0,1),(1,1),(2,2),(3,2)$.
*a) $y=.9+.4 x$
b) $y=4.5+9.5 x$
c) $y=.4+.9 x$
d) $y=9.5-4.5 x$
12. Find the characteristic polynomial of the following matrix:

$$
A=\left[\begin{array}{rrr}
-2 & 0 & 3 \\
1 & 5 & -1 \\
2 & 0 & 4
\end{array}\right]
$$

a) $(-2-\lambda)(5-\lambda)(4-\lambda)$
*b) $(5-\lambda)\left(\lambda^{2}-2 \lambda-14\right)$
c) $\lambda^{3}+5 \lambda^{2}+6 \lambda-14$
d) $5\left(\lambda^{2}-2 \lambda-14\right)$
13. For what value of h are the vectors $\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{l}h \\ 5 \\ 6\end{array}\right]$ linearly independent?
a) $h \neq 12$
*b) $h \neq-12$
c) $h=-12$
d) $h=-10$
14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}2 \\ 5\end{array}\right]$. What is $T^{-1}\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$?
a) $\left[\begin{array}{r}8 \\ 10\end{array}\right]$
b) $\left[\begin{array}{r}-8 \\ 10\end{array}\right]$
*c) $\left[\begin{array}{r}1 \\ -1\end{array}\right]$
d) $\left[\begin{array}{r}2 \\ -4\end{array}\right]$
15. If $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 3 & -1 & 0 \\ 0 & -1 & 1\end{array}\right]$, find the second column of A^{-1}.
a) $\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$
*b) $\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
c) $\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right]$
16. Find the coordinate vector of \mathbf{x} relative to the basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ where $\mathbf{x}=\left[\begin{array}{r}-3 \\ 0 \\ 5\end{array}\right], \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}7 \\ 4 \\ -3\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-5 \\ -2 \\ 4\end{array}\right]$.
*a) $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
b) $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$
c) $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$
d) $\left[\begin{array}{l}-3 \\ -2\end{array}\right]$
17. What is the rank of a 3×6 matrix whose null space is 4 -dimensional?
a) 1
*b) 2
c) 3
d) 4
18. Find the eigenvalues of $\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
a) 1, 1, 2
b) $1,2,2$
c) $1,-1,2$
*d) 1, 2, 3
19. Given the diagonalized matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{rl}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{rll}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$, compute A^{10}.
a) $\frac{1}{2}\left[\begin{array}{ll}3^{10}-1 & 3^{10}+1 \\ 3^{10}+1 & 3^{10}-1\end{array}\right]$
b) $\frac{1}{2}\left[\begin{array}{ll}3^{10}-1 & 3^{10}-1 \\ 3^{10}-1 & 3^{10}+1\end{array}\right]$
*c) $\frac{1}{2}\left[\begin{array}{ll}3^{10}+1 & 3^{10}-1 \\ 3^{10}-1 & 3^{10}+1\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{ll}3^{10}+1 & 3^{10}+1 \\ 3^{10}+1 & 3^{10}-1\end{array}\right]$
20. What is the distance between $\mathbf{u}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right]$?
a) 3
b) $\sqrt{10}$
c) $\sqrt{12}$
*d) $\sqrt{11}$
21. Find the orthogonal projection of \mathbf{x} onto $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$
where $\mathbf{x}=\left[\begin{array}{r}-1 \\ 4 \\ 3\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$.
*a) $\left[\begin{array}{r}-1 \\ 4 \\ 0\end{array}\right]$
b) $\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$
c) $\left[\begin{array}{r}0 \\ -1 \\ 2\end{array}\right]$
d) $\left[\begin{array}{r}-2 \\ 2 \\ 1\end{array}\right]$
22. If A is an $n \times n$ square matrix, and I denotes the $n \times n$ identity matrix, which of the following statements is not necessarily true?
\star a) If the columns of A form an orthogonal set, then A is an orthogonal matrix.
b) If $A A^{T}=I$, then A is an orthogonal matrix.
c) If A is an orthogonal matrix, its determinant must be ± 1.
d) If A is an orthogonal matrix, the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths and orthogonality.
23. Which of the following statements is not true?
a) An $n \times n$ matrix that is orthogonally diagonalizable must be symmetric.
b) For any matrix $A, A^{T} A$ is symmetric.
c) If A is symmetric, any two eigenvectors of A corresponding to different eigenvalues must be orthogonal.
$\star \mathrm{d})$ If A and B are symmetric matrices, $A B$ must also be symmetric.
24. Find the least-squares solution for the system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 3 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$.
*a) $\left[\begin{array}{l}1 / 2 \\ 5 / 9\end{array}\right]$
b) $\left[\begin{array}{c}1 / 2 \\ 10 / 9\end{array}\right]$
c) $\left[\begin{array}{l}1 / 2 \\ 7 / 9\end{array}\right]$
d) $\left[\begin{array}{l}1 / 2 \\ 1 / 9\end{array}\right]$
25. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Which of the following correctly express \mathbf{v} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} ?
a) $\mathbf{v}=\frac{x+y+z}{2} \mathbf{v}_{1}+\frac{x-y}{3} \mathbf{v}_{2}+\frac{x+y-z}{5} \mathbf{v}_{3}$
b) $\mathbf{v}=\frac{x+y+z}{7} \mathbf{v}_{1}+\frac{x+y-2 z}{4} \mathbf{v}_{2}+\frac{x-y}{2} \mathbf{v}_{3}$
\star c) $\mathbf{v}=\frac{x+y+z}{3} \mathbf{v}_{1}+\frac{x-y}{2} \mathbf{v}_{2}+\frac{x+y-2 z}{6} \mathbf{v}_{3}$
d) $\mathbf{v}=\frac{x-y-z}{3} \mathbf{v}_{1}+\frac{x-y}{7} \mathbf{v}_{2}+\frac{x-y+2 z}{6} \mathbf{v}_{3}$
26. Let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 6 \\ 0\end{array}\right]$. Which of the following vectors belong to the orthogonal complement of W ?
*a) $\left[\begin{array}{l}0 \\ 8 \\ 0 \\ 9\end{array}\right]$ and $\left[\begin{array}{c}0 \\ 2 \\ 0 \\ 17\end{array}\right]$
b) $\left[\begin{array}{c}1 \\ 12 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 17 \\ 0 \\ -1\end{array}\right]$
c) $\left[\begin{array}{c}2 \\ 4 \\ 11 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 2 \\ 2 \\ -8\end{array}\right]$
d) $\left[\begin{array}{c}1 \\ 0 \\ 12 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}12 \\ 0 \\ -6 \\ 0\end{array}\right]$
27. Find a basis of the column space $\operatorname{Col} A$ for the matrix $A=\left[\begin{array}{rrrrr}4 & 5 & -11 & 2 & 5 \\ 4 & 5 & -3 & 11 & 7 \\ 4 & 6 & -4 & 3 & 1\end{array}\right]$.
a) The first and second columns
b) The first and last columns
\star c) The first, second and third columns
d) The fourth and fifth columns
28. Let $\mathbf{v}=\left[\begin{array}{r}3 \\ -3 \\ 1\end{array}\right]$. Which of the following vectors is in the same direction as \mathbf{v} ?
*a) $\left[\begin{array}{r}51 \\ -51 \\ 17\end{array}\right]$
b) $\left[\begin{array}{r}-7 \\ -7 \\ 3\end{array}\right]$
c) $\left[\begin{array}{r}-63 \\ 63 \\ -21\end{array}\right]$
d) $\left[\begin{array}{r}57 \\ 57 \\ -17\end{array}\right]$
29. Let $\mathbf{y}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. What is the distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{v} ?
a) 1
b) $\sqrt{2}$
*c) $\sqrt{3}$
d) 2
30. The vectors $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}5 \\ 6 \\ -7\end{array}\right]$ form a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
a) $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
*b) $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}5 \\ 4 \\ -8\end{array}\right]$
c) $\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}5 \\ 6 \\ -7\end{array}\right]$
d) $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}5 \\ 6 \\ -7\end{array}\right]$

[^0]: THE USE OF NOTES OF ANY KIND IS NOT PERMITTED DURING THIS EXAMINATION.

