Math 141H.1, Honors Calculus II

Midterm Exam 4

Stephen G. Simpson

April 17, 2002

The exam consists of eight problems. Calculators are not allowed.

- 1. Find a power series representation of $\sqrt{1-9x^4}$ centered at x=0. What is the radius of convergence?
- 2. Find a power series representation for $\sin x$ centered at $x = \frac{\pi}{4}$.
- 3. For which x-values is the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)(n+2)(n+3)}$$

absolutely convergent? Conditionally convergent? Divergent? Justify your answers.

- 4. Let f(x) be the power series of the previous problem. Find $f^{(7)}(0)$, the seventh derivative of f(x) evaluated at x = 0.
- 5. Find the first 4 terms of a power series representation for $e^x/(1-x)$ centered at x=0.
- 6. Let C be a parametrized curve defined by $x = t + \ln t$, $y = \tan^{-1} t$. Let P be the point

$$\left(\sqrt{3} + \frac{\ln 3}{2}, \frac{\pi}{3}\right)$$

on C. Let L be the tangent line to C at P. Find an equation for L.

- 7. Let C be the curve $y=2\sqrt{x},\,0\leq x\leq 1$. Find the area of the surface obtained by revolving C about the x-axis.
- 8. Use the power series method to solve the initial value problem

$$y' = 2y + 1,$$
 $y(0) = 0.$