Math 141H.1, Honors Calculus II
 Final Exam

Stephen G. Simpson

May 1, 2002

No calculators. There are 12 problems.

1. Evaluate $\int_{1}^{4} \frac{d x}{x+2 \sqrt{x}}$.
2. If $f(x)=e^{x}+x$ and $g=f^{-1}$, find $g^{\prime}(3+\ln 3)$.
3. Assuming exponential population growth, if the growth rate is 1 per 100 per year, how many years will it take for the population to double? Is this more than 50 years, or less?
4. Find the limit of $\sec x-\tan x$ as x approaches $\pi / 2$.
5. Let R be the region $0 \leq x \leq 1,0 \leq y \leq e^{x}$. Find the volume obtained by revolving R about the y-axis.
6. Find $\int \sin ^{-1} x d x$.
7. Evaluate the improper integral $\int_{0}^{\infty} \frac{d x}{x^{2}+4 x+3}$.
8. Use Simpson's Rule with $n=4$ to approximate $\int_{0}^{\pi} \sin x d x$.
9. Find the Maclaurin series representation of $\frac{1}{(x-1)(x-2)}$.

Hint: Use partial fractions.
10. Let $f(x)$ be a function such that $f^{\prime}(x)=\sqrt{1+x^{8}}$ and $f(0)=0$. Find a power series representation of $f(x)$ centered at $x=0$. What is the radius of convergence?
11. Find the centroid of the semicircle $y=\sqrt{1-x^{2}},-1 \leq x \leq 1$.
12. Find the area enclosed by the curve $r=\sin ^{3 / 2} \theta, 0 \leq \theta \leq \pi$.

