Math 141H.1, Honors Calculus II

Bonus Problems 3

Stephen G. Simpson

April 22, 2002

Please work alone. You may use a calculator or computer algebra system if you wish, but please give exact solutions and show all the steps needed to obtain your solutions by hand.

Note: By a Maclaurin series, we mean a power series centered at x = 0.

1. Find the sum of the convergent series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

Hint: Start with the Maclaurin series for 1/(1 - x). Differentiate, multiply by x, differentiate, multiply by x, set x = 1/2.

- 2. Find the value of x for which $2^{x} + 2^{2x} + 2^{3x} + \dots = 2$.
- 3. It can be shown that, for |x| < 1, the infinite product

$$\prod_{n=1}^{\infty} (1+x^n) = (1+x)(1+x^2)(1+x^3)\cdots$$

converges to a power series $1+a_1x+a_2x^2+\cdots+a_nx^n+\cdots$. Find the first 12 coefficients: a_1, a_2, \ldots, a_{12} . Can you describe a_n combinatorially? Can you find a formula for a_n ?

4. The hyperbolic sine and hyperbolic cosine functions are defined by

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}.$$

Find the Maclaurin series representations of $\sinh x$ and $\cosh x$. Show that the derivative of $\sinh x$ is $\cosh x$, and the derivative of $\cosh x$ is $\sinh x$. Show that $\sinh^2 x + 1 = \cosh^2 x$. Show that

$$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{x^2 + 1}}$$

and use this to find the Maclaurin series representation of $\sinh^{-1} x$. Show that

$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$$

5. Find the length of the parametrized curve $x = t \cos t$, $y = t \sin t$ for $0 \le t \le 2\pi$.