Math 141H.1, Honors Calculus II Bonus Problems 3

Stephen G. Simpson

April 22, 2002

Please work alone. You may use a calculator or computer algebra system if you wish, but please give exact solutions and show all the steps needed to obtain your solutions by hand.

Note: By a Maclaurin series, we mean a power series centered at $x=0$.

1. Find the sum of the convergent series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.

Hint: Start with the Maclaurin series for $1 /(1-x)$. Differentiate, multiply by x, differentiate, multiply by x, set $x=1 / 2$.
2. Find the value of x for which $2^{x}+2^{2 x}+2^{3 x}+\cdots=2$.
3. It can be shown that, for $|x|<1$, the infinite product

$$
\prod_{n=1}^{\infty}\left(1+x^{n}\right)=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \cdots
$$

converges to a power series $1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$. Find the first 12 coefficients: $a_{1}, a_{2}, \ldots, a_{12}$. Can you describe a_{n} combinatorially? Can you find a formula for a_{n} ?
4. The hyperbolic sine and hyperbolic cosine functions are defined by

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2} .
$$

Find the Maclaurin series representations of $\sinh x$ and $\cosh x$. Show that the derivative of $\sinh x$ is $\cosh x$, and the derivative of $\cosh x$ is $\sinh x$. Show that $\sinh ^{2} x+1=\cosh ^{2} x$. Show that

$$
\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{x^{2}+1}}
$$

and use this to find the Maclaurin series representation of $\sinh ^{-1} x$. Show that

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) .
$$

5. Find the length of the parametrized curve $x=t \cos t, y=t \sin t$ for $0 \leq t \leq 2 \pi$.
